Spaces:
Runtime error
Runtime error
File size: 9,146 Bytes
b8429e3 ae672d5 b8429e3 c5470e9 b8429e3 7a28f2a b8429e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
import gradio as gr
import numpy as np
import pandas as pd
#from pandas_datareader import data as wb
import matplotlib.pyplot as plt
from scipy.stats import norm, gmean, cauchy
import seaborn as sns
from datetime import datetime
import os
import json
#%matplotlib inline
from alpha_vantage.timeseries import TimeSeries
import pandas as pd
from datetime import datetime
# Function to import stock data using Alpha Vantage
def import_stock_data_alphavantage(tickers, api_key, start='2023-1-01', end=datetime.today().strftime('%Y-%m-%d')):
data = pd.DataFrame()
ts = TimeSeries(key=api_key, output_format='pandas') # Initialize TimeSeries with your API key
if isinstance(tickers, str):
tickers = [tickers] # Convert to list if only one ticker is provided
for ticker in tickers:
# Get the stock data
df, meta_data = ts.get_daily_adjusted(ticker, outputsize='full')
# Selecting only the '5. adjusted close' column and renaming it to the ticker
df = df['5. adjusted close'].rename(ticker).to_frame()
# Filter the data based on the start and end dates
df = df[(df.index >= start) & (df.index <= end)]
# If data is empty, initialize it with the current df
if data.empty:
data = df
else:
# If not empty, join the new df with the existing data
data = data.join(df, how='outer')
return data
def log_returns(data):
"""
Calculate the log returns of a given dataset.
Parameters:
data (pandas.DataFrame): The dataset for which log returns are calculated.
Returns:
pandas.DataFrame: The log returns of the dataset.
"""
return (np.log(1+data.pct_change()))
def simple_returns(data):
"""
Calculate the simple returns of a given dataset.
Parameters:
data (pandas.Series): The dataset for which to calculate the simple returns.
Returns:
pandas.Series: The simple returns of the dataset.
"""
return ((data/data.shift(1))-1)
def market_data_combination(data, mark_ticker = "SPY", start='2022-1-1'):
api_key = os.environ.get('ALPHAVANTAGE_API_KEY')
market_data = import_stock_data_alphavantage(mark_ticker, api_key)
market_rets = log_returns(market_data).dropna()
ann_return = np.exp(market_rets.mean()*252).values-1
data = data.merge(market_data, left_index=True, right_index=True)
# Add debugging statements here
print("Market data shape:", market_data.shape)
print("Number of non-NaN entries in market data:", sum(~market_data.isna().values.flatten()))
print("First few rows of market data:\n", market_data.head())
return data, ann_return
def beta_sharpe(data, mark_ticker = "SPY", start='2010-1-1', riskfree = 0.025):
"""
Input:
1. data: dataframe of stock price data
2. mark_ticker: ticker of the market data you want to compute CAPM metrics with (default is ^GSPC)
3. start: data from which to download data (default Jan 1st 2010)
4. riskfree: the assumed risk free yield (US 10 Year Bond is assumed: 2.5%)
Output:
1. Dataframe with CAPM metrics computed against specified market procy
"""
# Beta
dd, mark_ret = market_data_combination(data, mark_ticker, start)
print("printing dd")
print(dd.head())
print("printing mark_ret")
print(mark_ret)
log_ret = log_returns(dd)
covar = log_ret.cov()*252
covar = pd.DataFrame(covar.iloc[:-1,-1])
mrk_var = log_ret.iloc[:,-1].var()*252
beta = covar/mrk_var
stdev_ret = pd.DataFrame(((log_ret.std()*250**0.5)[:-1]), columns=['STD'])
beta = beta.merge(stdev_ret, left_index=True, right_index=True)
# CAPM
for i, row in beta.iterrows():
beta.at[i,'CAPM'] = riskfree + (row[mark_ticker] * (mark_ret-riskfree))
# Sharpe
for i, row in beta.iterrows():
beta.at[i,'Sharpe'] = ((row['CAPM']-riskfree)/(row['STD']))
beta.rename(columns={"SPY":"Beta"}, inplace=True)
return beta
def drift_calc(data, return_type='log'):
try:
if return_type == 'log':
lr = log_returns(data)
elif return_type == 'simple':
lr = simple_returns(data)
u = lr.mean()
var = lr.var()
drift = u - (0.5 * var)
return drift.values
except Exception as e:
print(f"Error in drift_calc: {str(e)}")
print("Please check the input data and return type")
return None
def daily_returns(data, days, iterations, return_type='log'):
ft = drift_calc(data, return_type)
if return_type == 'log':
try:
stv = log_returns(data).std().values
except:
stv = log_returns(data).std()
elif return_type == 'simple':
try:
stv = simple_returns(data).std().values
except:
stv = simple_returns(data).std()
# Oftentimes, we find that the distribution of returns is a variation of the normal distribution where it has a fat tail
# This distribution is called cauchy distribution
dr = np.exp(ft + stv * norm.ppf(np.random.rand(days, iterations)))
return dr
def probs_find(predicted, higherthan, on = 'value'):
"""
This function calculated the probability of a stock being above a certain threshhold, which can be defined as a value (final stock price) or return rate (percentage change)
Input:
1. predicted: dataframe with all the predicted prices (days and simulations)
2. higherthan: specified threshhold to which compute the probability (ex. 0 on return will compute the probability of at least breakeven)
3. on: 'return' or 'value', the return of the stock or the final value of stock for every simulation over the time specified
"""
if on == 'return':
predicted0 = predicted.iloc[0,0]
predicted = predicted.iloc[-1]
predList = list(predicted)
over = [(i*100)/predicted0 for i in predList if ((i-predicted0)*100)/predicted0 >= higherthan]
less = [(i*100)/predicted0 for i in predList if ((i-predicted0)*100)/predicted0 < higherthan]
elif on == 'value':
predicted = predicted.iloc[-1]
predList = list(predicted)
over = [i for i in predList if i >= higherthan]
less = [i for i in predList if i < higherthan]
else:
print("'on' must be either value or return")
return (len(over)/(len(over)+len(less)))
import matplotlib.pyplot as plt
import seaborn as sns
def simulate_mc(data, days, iterations, return_type='log', plot=True):
# Generate daily returns
returns = daily_returns(data, days, iterations, return_type)
# Create empty matrix
price_list = np.zeros_like(returns)
# Put the last actual price in the first row of matrix.
price_list[0] = data.iloc[-1]
# Calculate the price of each day
for t in range(1,days):
price_list[t] = price_list[t-1]*returns[t]
# Plot Option
if plot == True:
x = pd.DataFrame(price_list).iloc[-1]
fig, ax = plt.subplots(1,2, figsize=(14,4))
sns.distplot(x, ax=ax[0])
sns.distplot(x, hist_kws={'cumulative':True},kde_kws={'cumulative':True},ax=ax[1])
plt.xlabel("Stock Price")
plt.savefig('stock_price_distribution.png')
plt.show()
#CAPM and Sharpe Ratio
# Printing information about stock
try:
[print(nam) for nam in data.columns]
except:
print(data.name)
print(f"Days: {days-1}")
print(f"Expected Value: ${round(pd.DataFrame(price_list).iloc[-1].mean(),2)}")
print(f"Return: {round(100*(pd.DataFrame(price_list).iloc[-1].mean()-price_list[0,1])/pd.DataFrame(price_list).iloc[-1].mean(),2)}%")
print(f"Probability of Breakeven: {probs_find(pd.DataFrame(price_list),0, on='return')}")
output = {
"Days": days-1,
"Expected Value": round(pd.DataFrame(price_list).iloc[-1].mean(), 2),
"Return": round(100*(pd.DataFrame(price_list).iloc[-1].mean()-price_list[0,1])/pd.DataFrame(price_list).iloc[-1].mean(), 2),
"Probability of Breakeven": probs_find(pd.DataFrame(price_list), 0, on='return')
}
return (output)
# return pd.DataFrame(price_list)
# set Variables
def get_stock_data(tickers, days):
api_key = os.getenv('ALPHAVANTAGE_API_KEY')
# Placeholder - This is where you'd fetch and process the actual stock data
# using libraries like pandas-datareader, yfinance, etc.
data = import_stock_data_alphavantage(tickers, api_key)
print(data.head())
log_return = log_returns(data)
print(data)
beta_sharpe(data)
drift_calc(data)
print(drift_calc(data))
dr = daily_returns(data, 2, 3)
item = simulate_mc(data, days, 2000, 'log')
print(item)
return json.dumps(item)
# Create Gradio interface elements
ticker_input = gr.Textbox(lines=1, placeholder="Enter tickers separated by commas (e.g., AAPL, TSLA)")
days_input = gr.Number(value=180, label="Number of Days")
iface = gr.Interface(
fn=get_stock_data,
inputs=[ticker_input, days_input],
outputs="text",
title="Stock Data Analyzer"
)
iface.launch(share=True)
|