File size: 14,218 Bytes
2d12f2a
 
3c52234
666d174
 
2d12f2a
 
 
f77afce
2d12f2a
 
 
 
 
 
 
f77afce
 
1415d69
f77afce
 
 
 
 
666d174
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42d4711
666d174
88f8db5
 
 
68f7905
88f8db5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ed6038
2d12f2a
 
 
 
 
 
1ed6038
2d12f2a
 
 
 
 
 
 
 
 
 
 
 
 
1ed6038
2d12f2a
 
 
 
 
4971268
2d12f2a
 
 
 
 
 
1ed6038
2d12f2a
0bd345a
2d12f2a
 
 
 
 
 
 
 
 
1ed6038
2d12f2a
0bd345a
2d12f2a
 
f6a40e3
 
 
 
 
 
 
 
 
 
 
2d12f2a
 
 
 
 
 
 
 
 
 
1ed6038
2d12f2a
0bd345a
2d12f2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ed6038
2d12f2a
0bd345a
2d12f2a
 
 
 
 
 
 
 
 
 
 
 
666d174
 
42d4711
 
666d174
2d12f2a
 
 
 
badfb4e
 
2d12f2a
 
 
 
 
 
 
 
 
666d174
 
2d12f2a
 
 
 
 
 
 
 
 
3f5181c
2d12f2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
666d174
 
 
 
 
 
 
 
 
 
2d12f2a
 
 
 
 
666d174
 
2d12f2a
 
 
 
 
 
 
 
 
 
 
666d174
87b5933
2d12f2a
 
 
 
 
8f5773e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
import datetime
import os
import streamlit as st
import numpy as np
import math
import fastf1
import pandas as pd
from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import FileResponse, HTMLResponse
from pydantic import BaseModel

import available_data

app = FastAPI()

app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

import math
import numpy as np
def smooth_derivative(t_in, v_in):

    #
    # Function to compute a smooth estimation of a derivative.
    # [REF: http://holoborodko.com/pavel/numerical-methods/numerical-derivative/smooth-low-noise-differentiators/]
    #

    # Configuration
    #
    # Derivative method: two options: 'smooth' or 'centered'. Smooth is more conservative
    # but helps to supress the very noisy signals. 'centered' is more agressive but more noisy
    method = "smooth"

    t = t_in.copy()
    v = v_in.copy()

    # (0) Prepare inputs

    # (0.1) Time needs to be transformed to seconds
    try:
        for i in range(0, t.size):
            t.iloc[i] = t.iloc[i].total_seconds()
    except:
        pass

    t = np.array(t)
    v = np.array(v)

    # (0.1) Assert they have the same size
    assert t.size == v.size

    # (0.2) Initialize output
    dvdt = np.zeros(t.size)

    # (1) Manually compute points out of the stencil

    # (1.1) First point
    dvdt[0] = (v[1] - v[0]) / (t[1] - t[0])

    # (1.2) Second point
    dvdt[1] = (v[2] - v[0]) / (t[2] - t[0])

    # (1.3) Third point
    dvdt[2] = (v[3] - v[1]) / (t[3] - t[1])

    # (1.4) Last points
    n = t.size
    dvdt[n - 1] = (v[n - 1] - v[n - 2]) / (t[n - 1] - t[n - 2])
    dvdt[n - 2] = (v[n - 1] - v[n - 3]) / (t[n - 1] - t[n - 3])
    dvdt[n - 3] = (v[n - 2] - v[n - 4]) / (t[n - 2] - t[n - 4])

    # (2) Compute the rest of the points
    if method == "smooth":
        c = [5.0 / 32.0, 4.0 / 32.0, 1.0 / 32.0]
        for i in range(3, t.size - 3):
            for j in range(1, 4):
                dvdt[i] += (
                    2 * j * c[j - 1] * (v[i + j] - v[i - j]) /
                    (t[i + j] - t[i - j])
                )
    elif method == "centered":
        for i in range(3, t.size - 2):
            for j in range(1, 4):
                dvdt[i] = (v[i + 1] - v[i - 1]) / (t[i + 1] - t[i - 1])

    return dvdt


def truncated_remainder(dividend, divisor):
    divided_number = dividend / divisor
    divided_number = (
        -int(-divided_number) if divided_number < 0 else int(divided_number)
    )

    remainder = dividend - divisor * divided_number

    return remainder


def transform_to_pipi(input_angle):
    pi = math.pi
    revolutions = int((input_angle + np.sign(input_angle) * pi) / (2 * pi))

    p1 = truncated_remainder(input_angle + np.sign(input_angle) * pi, 2 * pi)
    p2 = (
        np.sign(
            np.sign(input_angle)
            + 2
            * (
                np.sign(
                    math.fabs(
                        (truncated_remainder(input_angle + pi, 2 * pi)) / (2 * pi)
                    )
                )
                - 1
            )
        )
    ) * pi

    output_angle = p1 - p2

    return output_angle, revolutions


def remove_acceleration_outliers(acc):

    acc_threshold_g = 7.5
    if math.fabs(acc[0]) > acc_threshold_g:
        acc[0] = 0.0

    for i in range(1, acc.size - 1):
        if math.fabs(acc[i]) > acc_threshold_g:
            acc[i] = acc[i - 1]

    if math.fabs(acc[-1]) > acc_threshold_g:
        acc[-1] = acc[-2]

    return acc


def compute_accelerations(telemetry):

    v = np.array(telemetry["Speed"]) / 3.6
    lon_acc = smooth_derivative(telemetry["Time"], v) / 9.81

    dx = smooth_derivative(telemetry["Distance"], telemetry["X"])
    dy = smooth_derivative(telemetry["Distance"], telemetry["Y"])

    theta = np.zeros(dx.size)
    theta[0] = math.atan2(dy[0], dx[0])
    for i in range(0, dx.size):
        theta[i] = (
            theta[i - 1] +
            transform_to_pipi(math.atan2(dy[i], dx[i]) - theta[i - 1])[0]
        )

    kappa = smooth_derivative(telemetry["Distance"], theta)
    lat_acc = v * v * kappa / 9.81

    # Remove outliers
    lon_acc = remove_acceleration_outliers(lon_acc)
    lat_acc = remove_acceleration_outliers(lat_acc)

    return np.round(lon_acc,2), np.round(lat_acc,2)

@st.cache_data
@app.get("/wdc", response_model=None)
def driver_standings() -> any:
    YEAR = 2023 #datetime.datetime.now().year
    df = pd.DataFrame(
        pd.read_html(f"https://www.formula1.com/en/results.html/{YEAR}/drivers.html")[0]
    )
    df = df[["Driver", "PTS", "Car"]]
    # reverse the order
    df = df.sort_values(by="PTS", ascending=False)

    # in Driver column only keep the last 3 characters
    df["Driver"] = df["Driver"].str[:-3]
    
    # add colors to the dataframe
    car_colors = available_data.team_colors(YEAR)
    df["fill"] = df["Car"].map(car_colors)

    
    # remove rows where points is 0
    df = df[df["PTS"] != 0]
    df.reset_index(inplace=True, drop=True)
    df.rename(columns={"PTS": "Points"}, inplace=True)

    return  {"WDC":df.to_dict("records")}

@st.cache_data
@app.get("/", response_model=None)
async def root():
    return HTMLResponse(
        content="""<iframe src="https://tracinginsights-f1-analysis.hf.space" frameborder="0" style="width:100%; height:100%;" scrolling="yes" allowfullscreen:"yes"></iframe>""",
        status_code=200)

@st.cache_data
@app.get("/years", response_model=None)
def years_available() -> any:
    # make a list from 2018 to current year
    current_year = datetime.datetime.now().year
    years = list(range(2018, current_year+1))
    # reverse the list to get the latest year first
    years.reverse()
    years = [{"label": str(year), "value": year} for year in years]
    return {"years": years}


# format for events {"events":[{"label":"Saudi Arabian Grand Prix","value":2},{"label":"Bahrain Grand Prix","value":1},{"label":"Pre-Season Testing","value":"t1"}]}

@st.cache_data
@app.get("/{year}", response_model=None)
def events_available(year: int) -> any:
    # get events available for a given year
    data = available_data.LatestData(year)
    events = data.get_events()
    events = [{"label": event, "value": event} for i, event in enumerate(events)]
    events.reverse()

    return {"events": events}

# format for sessions {"sessions":[{"label":"FP1","value":"FP1"},{"label":"FP2","value":"FP2"},{"label":"FP3","value":"FP3"},{"label":"Qualifying","value":"Q"},{"label":"Race","value":"R"}]}

@st.cache_data
@app.get("/{year}/{event}", response_model=None)
def sessions_available(year: int, event: str | int) -> any:
    # get sessions available for a given year and event
    data = available_data.LatestData(year)
    sessions = data.get_sessions(event)
    sessions = [{"label": session, "value": session} for session in sessions]

    return {"sessions": sessions}

# format for drivers {"drivers":[{"color":"#fff500","label":"RIC","value":"RIC"},{"color":"#ff8700","label":"NOR","value":"NOR"},{"color":"#c00000","label":"VET","value":"VET"},{"color":"#0082fa","label":"LAT","value":"LAT"},{"color":"#787878","label":"GRO","value":"GRO"},{"color":"#ffffff","label":"GAS","value":"GAS"},{"color":"#f596c8","label":"STR","value":"STR"},{"color":"#787878","label":"MAG","value":"MAG"},{"color":"#0600ef","label":"ALB","value":"ALB"},{"color":"#ffffff","label":"KVY","value":"KVY"},{"color":"#fff500","label":"OCO","value":"OCO"},{"color":"#0600ef","label":"VER","value":"VER"},{"color":"#00d2be","label":"HAM","value":"HAM"},{"color":"#ff8700","label":"SAI","value":"SAI"},{"color":"#00d2be","label":"BOT","value":"BOT"},{"color":"#960000","label":"GIO","value":"GIO"}]}

@st.cache_data
@app.get("/{year}/{event}/{session}", response_model=None)
def session_drivers(year: int, event: str | int, session: str) -> any:
    # get drivers available for a given year, event and session
    f1session = fastf1.get_session(year, event, session)
    api_path = f1session.api_path
    drivers_raw = fastf1.api.driver_info(api_path)
    drivers = []
    for driver in drivers_raw.items():
        drivers.append({
            "color": available_data.team_colors(year)[driver[1]['TeamName']],
                
            "label": driver[1]['Tla'],
            "value": driver[1]['Tla']})
    
    
    return {"drivers": drivers}


# format for chartData {"chartData":[{"lapnumber":1},{
    # "VER":91.564,
    # "VER_compound":"SOFT",
    # "VER_compound_color":"#FF5733",
    # "lapnumber":2
    # },{"lapnumber":3},{"VER":90.494,"VER_compound":"SOFT","VER_compound_color":"#FF5733","lapnumber":4},{"lapnumber":5},{"VER":90.062,"VER_compound":"SOFT","VER_compound_color":"#FF5733","lapnumber":6},{"lapnumber":7},{"VER":89.815,"VER_compound":"SOFT","VER_compound_color":"#FF5733","lapnumber":8},{"VER":105.248,"VER_compound":"SOFT","VER_compound_color":"#FF5733","lapnumber":9},{"lapnumber":10},{"VER":89.79,"VER_compound":"SOFT","VER_compound_color":"#FF5733","lapnumber":11},{"VER":145.101,"VER_compound":"SOFT","VER_compound_color":"#FF5733","lapnumber":12},{"lapnumber":13},{"VER":89.662,"VER_compound":"SOFT","VER_compound_color":"#FF5733","lapnumber":14},{"lapnumber":15},{"VER":89.617,"VER_compound":"SOFT","VER_compound_color":"#FF5733","lapnumber":16},{"lapnumber":17},{"VER":140.717,"VER_compound":"SOFT","VER_compound_color":"#FF5733","lapnumber":18}]}

@st.cache_data
@app.get("/{year}/{event}/{session}/{driver}", response_model=None)
def laps_data(year: int, event: str | int, session: str, driver: str) -> any:

    # get drivers available for a given year, event and session
    f1session = fastf1.get_session(year, event, session)
    f1session.load(telemetry=False, weather=False, messages=False)
    laps = f1session.laps
    team_colors = available_data.team_colors(year)
    # add team_colors dict to laps on Team column

    drivers = laps.Driver.unique()
    # for each driver in drivers, get the Team column from laps and get the color from team_colors dict
    drivers = [{"color": team_colors[laps[laps.Driver ==
                                          driver].Team.iloc[0]], "label": driver, "value": driver} for driver in drivers]

    driver_laps = laps.pick_driver(driver)
    driver_laps['LapTime'] = driver_laps['LapTime'].dt.total_seconds()
    compound_colors = {
        "SOFT": "#FF0000",
        "MEDIUM": "#FFFF00",
        "HARD": "#FFFFFF",
        "INTERMEDIATE": "#00FF00",
        "WET": "#088cd0",

    }

    driver_laps_data = []

    for _, row in driver_laps.iterrows():

        if row['LapTime'] > 0:
            lap = {f"{driver}": row['LapTime'],
                   f"{driver}_compound": row['Compound'],
                   f"{driver}_compound_color": compound_colors[row['Compound']],
                   "lapnumber": row['LapNumber']}
        else:
            lap = {"lapnumber": row['LapNumber']}

        driver_laps_data.append(lap)

    return {"chartData": driver_laps_data}

@st.cache_data
@app.get("/{year}/{event}/{session}/{driver}/{lap_number}", response_model=None)
def telemetry_data(year: int, event: str | int, session: str, driver: str, lap_number: int) -> any:

    f1session = fastf1.get_session(year, event, session)
    f1session.load(telemetry=True, weather=False, messages=False)
    laps = f1session.laps
    
    driver_laps = laps.pick_driver(driver)
    driver_laps['LapTime'] = driver_laps['LapTime'].dt.total_seconds()

    # get the telemetry for lap_number
    selected_lap = driver_laps[driver_laps.LapNumber == lap_number]

    telemetry = selected_lap.get_telemetry()
    
    lon_acc, lat_acc = compute_accelerations(telemetry)    
    telemetry["lon_acc"] = lon_acc
    telemetry["lat_acc"] = lat_acc
    
    telemetry['Time'] =  telemetry['Time'].dt.total_seconds()
    
    laptime = selected_lap.LapTime.values[0]
    data_key = f"{driver} - Lap {int(lap_number)} - {year} {session} [{int(laptime//60)}:{laptime%60}]"

    telemetry['DRS'] = telemetry['DRS'].apply(lambda x: 1 if x in [10,12,14] else 0)
    
    brake_tel = []
    drs_tel = []
    gear_tel = []
    rpm_tel = []
    speed_tel = []
    throttle_tel = []
    time_tel = []
    track_map = []
    lon_acc_tel = []
    lat_acc_tel = []
    
    for _, row in telemetry.iterrows():
        
        brake = {"x": row['Distance'],
                    "y": row['Brake'],
                    }
        brake_tel.append(brake)        
        
        drs = {"x": row['Distance'],
                    "y": row['DRS'],
                    }
        drs_tel.append(drs)
        
        gear = {"x": row['Distance'],
                    "y": row['nGear'],
                    }
        gear_tel.append(gear)
        
        rpm = {"x": row['Distance'],
                    "y": row['RPM'],
                    }
        rpm_tel.append(rpm)
        
        speed = {"x": row['Distance'],
                    "y": row['Speed'],
                    }
        speed_tel.append(speed)
        
        throttle = {"x": row['Distance'],
                    "y": row['Throttle'],
                    } 
        throttle_tel.append(throttle)
        
        time = {"x": row['Distance'],
                    "y": row['Time'],
                    } 
        time_tel.append(time)

        lon_acc = {"x": row['Distance'],
                    "y": row['lon_acc'],
                    } 
        lon_acc_tel.append(lon_acc)

        lat_acc = {"x": row['Distance'],
                    "y": row['lat_acc'],
                    } 
        lat_acc_tel.append(lat_acc)
        
        track = {"x": row['X'],
                    "y": row['Y'],
                    } 
        track_map.append(track)

        
        
    telemetry_data = {
        "telemetryData":{
            "brake": brake_tel,
            "dataKey": data_key,
            "drs": drs_tel,
            "gear": gear_tel,
            "rpm": rpm_tel,
            "speed": speed_tel,
            "throttle": throttle_tel,
            "time": time_tel,
            "lon_acc": lon_acc_tel,
            "lat_acc": lat_acc_tel,
            "trackMap": track_map,
        }
    }
    
    return telemetry_data