supervision / app.py
tree3po's picture
Update app.py
14122ff verified
raw
history blame
2.77 kB
import cv2
import gradio as gr
import supervision as sv
from ultralytics import YOLO
from PIL import Image
import torch
import time
import numpy as np
import uuid
import spaces
ver=[0,0,0,0,0,0,6,7,8,9,10,11]
ltr=["n","s","m","1","x"]
tsk=["","-seg","-pose","-obb","-cls"]
#yolov8s.pt
modin=f"yolov{ver[9]}{ltr[1]}{tsk[0]}.pt"
model = YOLO(modin)
annotators = ["Box","RoundBox","BoxCorner","Color",
"Circle","Dot","Triangle","Elipse","Halo",
"PercentageBar","Mask","Polygon","Label",
"RichLabel","Icon","Crop","Blur","Pixelate","HeatMap"]
@spaces.GPU
def stream_object_detection(video):
SUBSAMPLE=1
cap = cv2.VideoCapture(video)
# This means we will output mp4 videos
video_codec = cv2.VideoWriter_fourcc(*"mp4v") # type: ignore
fps = int(cap.get(cv2.CAP_PROP_FPS))
desired_fps = fps // SUBSAMPLE
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) // 2
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) // 2
iterating, frame = cap.read()
n_frames = 0
output_video_name = f"output_{uuid.uuid4()}.mp4"
output_video = cv2.VideoWriter(output_video_name, video_codec, desired_fps, (width, height)) # type: ignore
while iterating:
frame = cv2.resize( frame, (0,0), fx=0.5, fy=0.5)
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
result = model(Image.fromarray(frame))[0]
detections = sv.Detections.from_ultralytics(result)
print(detections)
box_annotator = eval(f'sv.{annotators[0]}Annotator()')
outp = box_annotator.annotate(
scene=frame.copy(),
detections=detections)
#outp = draw_box(frame,detections)
frame = np.array(outp)
# Convert RGB to BGR
frame = frame[:, :, ::-1].copy()
output_video.write(frame)
batch = []
output_video.release()
yield output_video_name,detections
output_video_name = f"output_{uuid.uuid4()}.mp4"
output_video = cv2.VideoWriter(output_video_name, video_codec, desired_fps, (width, height)) # type: ignore
iterating, frame = cap.read()
n_frames += 1
with gr.Blocks() as app:
gr.HTML("<div style='font-size: 50px;font-weight: 800;'>Supervision</div><div style='font-size: 30px;'>Video Object Detection</div><div>Github:<a href='https://github.com/roboflow/supervision' target='_blank'>https://github.com/roboflow/supervision</a></div>")
#inp = gr.Image(type="filepath")
with gr.Row():
with gr.Column():
inp = gr.Video()
btn = gr.Button()
outp_v = gr.Video(label="Processed Video", streaming=True, autoplay=True)
outp_j = gr.JSON()
btn.click(stream_object_detection,inp,[outp_v,outp_j])
app.queue().launch()