File size: 12,295 Bytes
bfb3ae7
da92625
 
 
 
bfb3ae7
da92625
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bfb3ae7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da92625
bfb3ae7
826f447
bfb3ae7
 
 
 
 
 
 
826f447
 
bbcf980
 
979bed2
8ef75a7
 
 
4575ae2
8ef75a7
4575ae2
 
8ef75a7
 
 
4575ae2
8ef75a7
 
 
4575ae2
8ef75a7
 
 
4575ae2
8ef75a7
 
 
4575ae2
37b3751
979bed2
 
 
bfb3ae7
8ef75a7
 
 
 
 
 
 
 
 
3d466ff
 
 
 
8ef75a7
da92625
bfb3ae7
 
 
 
da92625
bfb3ae7
 
 
 
 
 
 
 
da92625
 
 
d4a35ea
bfb3ae7
b47be80
bfb3ae7
b47be80
bfb3ae7
da92625
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b47be80
da92625
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
from dataclasses import dataclass, make_dataclass, field
from enum import Enum

import pandas as pd

from src.about import Tasks, Domains

def fields(raw_class):
    return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]


# These classes are for user facing column names,
# to avoid having to change them all around the code
# when a modif is needed
@dataclass
class ColumnContent:
    name: str
    type: str
    displayed_by_default: bool
    hidden: bool = False
    never_hidden: bool = False

## Leaderboard columns
auto_eval_column_dict = []
# # Init
# auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
# auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])

# # new columns
# for domain in Domains:
#     auto_eval_column_dict.append([domain.name, ColumnContent, ColumnContent(domain.value.col_name, "number", True)])

# auto_eval_column_dict.append(["organization", ColumnContent, ColumnContent("Organization", "str", False)])
# auto_eval_column_dict.append(["knowledge_cutoff", ColumnContent, ColumnContent("Knowledge cutoff", "str", False)])


# for task in Tasks:
#     auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
# auto_eval_column_dict.append(["model_type_symbol", ColumnContent, field(default_factory=lambda: ColumnContent("T", "str", True, never_hidden=True))])
# #Scores
# auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
# # Model information
# auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
# auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
# auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
# auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
# auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
# auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)])
# auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
# auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])

# Init
auto_eval_column_dict.append(["model", ColumnContent, field(default_factory=lambda: ColumnContent("Model", "markdown", True, never_hidden=True))])
auto_eval_column_dict.append(["license", ColumnContent, field(default_factory=lambda: ColumnContent("License", "str", False))])

# new columns
for domain in Domains:
    auto_eval_column_dict.append([domain.name, ColumnContent, field(default_factory=lambda: ColumnContent(domain.value.col_name, "number", True))])

auto_eval_column_dict.append(["organization", ColumnContent, field(default_factory=lambda: ColumnContent("Organization", "str", False))])
auto_eval_column_dict.append(["knowledge_cutoff", ColumnContent, field(default_factory=lambda: ColumnContent("Knowledge cutoff", "str", False))])
auto_eval_column_dict.append(["score", ColumnContent, field(default_factory=lambda: ColumnContent("Average Score", "number", True))])
auto_eval_column_dict.append(["score_sd", ColumnContent, field(default_factory=lambda: ColumnContent("Score SD", "number", True))])
auto_eval_column_dict.append(["rank", ColumnContent, field(default_factory=lambda: ColumnContent("Rank", "number", True))])

# fine-grained dimensions
auto_eval_column_dict.append(["score_overall", ColumnContent, field(default_factory=lambda: ColumnContent("Score (MT-Bench)", "number", True))])
auto_eval_column_dict.append(["sd_overall", ColumnContent, field(default_factory=lambda: ColumnContent("Std dev(MT-Bench)", "number", True))])
auto_eval_column_dict.append(["rank_overall", ColumnContent, field(default_factory=lambda: ColumnContent("Rank (MT-Bench)", "number", True))])

auto_eval_column_dict.append(["score_math_algebra", ColumnContent, field(default_factory=lambda: ColumnContent("Score (Math Algebra)", "number", True))])
auto_eval_column_dict.append(["sd_math_algebra", ColumnContent, field(default_factory=lambda: ColumnContent("Std dev (Math Algebra)", "number", True))])
auto_eval_column_dict.append(["rank_math_algebra", ColumnContent, field(default_factory=lambda: ColumnContent("Rank (Math Algebra)", "number", True))])

auto_eval_column_dict.append(["score_math_geometry", ColumnContent, field(default_factory=lambda: ColumnContent("Score (Math Geometry)", "number", True))])
auto_eval_column_dict.append(["sd_math_geometry", ColumnContent, field(default_factory=lambda: ColumnContent("Std dev (Math Geometry)", "number", True))])
auto_eval_column_dict.append(["rank_math_geometry", ColumnContent, field(default_factory=lambda: ColumnContent("Rank (Math Geometry)", "number", True))])

auto_eval_column_dict.append(["score_math_probability", ColumnContent, field(default_factory=lambda: ColumnContent("Score (Math Probability)", "number", True))])
auto_eval_column_dict.append(["sd_math_probability", ColumnContent, field(default_factory=lambda: ColumnContent("Std dev (Math Probability)", "number", True))])
auto_eval_column_dict.append(["rank_math_probability", ColumnContent, field(default_factory=lambda: ColumnContent("Rank (Math Probability)", "number", True))])

auto_eval_column_dict.append(["score_reason_logical", ColumnContent, field(default_factory=lambda: ColumnContent("Score (Logical Reasoning)", "number", True))])
auto_eval_column_dict.append(["sd_reason_logical", ColumnContent, field(default_factory=lambda: ColumnContent("Std dev (Logical Reasoning)", "number", True))])
auto_eval_column_dict.append(["rank_reason_logical", ColumnContent, field(default_factory=lambda: ColumnContent("Rank (Logical Reasoning)", "number", True))])

auto_eval_column_dict.append(["score_reason_social", ColumnContent, field(default_factory=lambda: ColumnContent("Score (Social Reasoning)", "number", True))])
auto_eval_column_dict.append(["sd_reason_social", ColumnContent, field(default_factory=lambda: ColumnContent("Std dev (Social Reasoning)", "number", True))])
auto_eval_column_dict.append(["rank_reason_social", ColumnContent, field(default_factory=lambda: ColumnContent("Rank (Social Reasoning)", "number", True))])
                             
auto_eval_column_dict.append(["score_chemistry", ColumnContent, field(default_factory=lambda: ColumnContent("Score (Chemistry)", "number", True))])
auto_eval_column_dict.append(["sd_chemistry", ColumnContent, field(default_factory=lambda: ColumnContent("Std dev (Chemistry)", "number", True))])
auto_eval_column_dict.append(["rank_chemistry", ColumnContent, field(default_factory=lambda: ColumnContent("Rank (Chemistry)", "number", True))])

auto_eval_column_dict.append(["score_physics", ColumnContent, field(default_factory=lambda: ColumnContent("Score (Physics)", "number", True))])
auto_eval_column_dict.append(["sd_physics", ColumnContent, field(default_factory=lambda: ColumnContent("Std dev (Physics)", "number", True))])
auto_eval_column_dict.append(["rank_physics", ColumnContent, field(default_factory=lambda: ColumnContent("Rank (Physics)", "number", True))])

auto_eval_column_dict.append(["score_biology", ColumnContent, field(default_factory=lambda: ColumnContent("Score (Biology)", "number", True))])
auto_eval_column_dict.append(["sd_biology", ColumnContent, field(default_factory=lambda: ColumnContent("Std dev (Biology)", "number", True))])
auto_eval_column_dict.append(["rank_biology", ColumnContent, field(default_factory=lambda: ColumnContent("Rank (Biology)", "number", True))])


auto_eval_column_dict.append(["score_cpp", ColumnContent, field(default_factory=lambda: ColumnContent("Score (C++)", "number", True))])
auto_eval_column_dict.append(["sd_cpp", ColumnContent, field(default_factory=lambda: ColumnContent("Std dev (C++)", "number", True))])
auto_eval_column_dict.append(["rank_cpp", ColumnContent, field(default_factory=lambda: ColumnContent("Rank (C++)", "number", True))])


for task in Tasks:
    auto_eval_column_dict.append([task.name, ColumnContent, field(default_factory=lambda: ColumnContent(task.value.col_name, "number", True))])
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, field(default_factory=lambda: ColumnContent("T", "str", True, never_hidden=True))])
#Scores
auto_eval_column_dict.append(["average", ColumnContent, field(default_factory=lambda: ColumnContent("Average ⬆️", "number", True))])
# Model information
auto_eval_column_dict.append(["model_type", ColumnContent, field(default_factory=lambda: ColumnContent("Type", "str", False))])
auto_eval_column_dict.append(["architecture", ColumnContent, field(default_factory=lambda: ColumnContent("Architecture", "str", False))])
auto_eval_column_dict.append(["weight_type", ColumnContent, field(default_factory=lambda: ColumnContent("Weight type", "str", False, True))])
auto_eval_column_dict.append(["precision", ColumnContent, field(default_factory=lambda: ColumnContent("Precision", "str", False))])
auto_eval_column_dict.append(["params", ColumnContent, field(default_factory=lambda: ColumnContent("#Params (B)", "number", False))])
auto_eval_column_dict.append(["likes", ColumnContent, field(default_factory=lambda: ColumnContent("Hub ❤️", "number", False))])
auto_eval_column_dict.append(["still_on_hub", ColumnContent, field(default_factory=lambda: ColumnContent("Available on the hub", "bool", False))])
auto_eval_column_dict.append(["revision", ColumnContent, field(default_factory=lambda: ColumnContent("Model sha", "str", False, False))])

# We use make dataclass to dynamically fill the scores from Tasks
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
AutoEvalColumn = AutoEvalColumn()
# print all attributes of AutoEvalColumn
# print(AutoEvalColumn.__annotations__.keys())
# preint precision attribute
# print(AutoEvalColumn.precision)


## For the queue columns in the submission tab
@dataclass(frozen=True)
class EvalQueueColumn:  # Queue column
    model = ColumnContent("model", "markdown", True)
    revision = ColumnContent("revision", "str", True)
    private = ColumnContent("private", "bool", True)
    precision = ColumnContent("precision", "str", True)
    weight_type = ColumnContent("weight_type", "str", "Original")
    status = ColumnContent("status", "str", True)

## All the model information that we might need
@dataclass
class ModelDetails:
    name: str
    display_name: str = ""
    symbol: str = "" # emoji


class ModelType(Enum):
    PT = ModelDetails(name="pretrained", symbol="🟢")
    FT = ModelDetails(name="fine-tuned", symbol="🔶")
    IFT = ModelDetails(name="instruction-tuned", symbol="⭕")
    RL = ModelDetails(name="RL-tuned", symbol="🟦")
    Unknown = ModelDetails(name="", symbol="?")

    def to_str(self, separator=" "):
        return f"{self.value.symbol}{separator}{self.value.name}"

    @staticmethod
    def from_str(type):
        if "fine-tuned" in type or "🔶" in type:
            return ModelType.FT
        if "pretrained" in type or "🟢" in type:
            return ModelType.PT
        if "RL-tuned" in type or "🟦" in type:
            return ModelType.RL
        if "instruction-tuned" in type or "⭕" in type:
            return ModelType.IFT
        return ModelType.Unknown

class WeightType(Enum):
    Adapter = ModelDetails("Adapter")
    Original = ModelDetails("Original")
    Delta = ModelDetails("Delta")

class Precision(Enum):
    float16 = ModelDetails("float16")
    bfloat16 = ModelDetails("bfloat16")
    Unknown = ModelDetails("?")

    def from_str(precision):
        if precision in ["torch.float16", "float16"]:
            return Precision.float16
        if precision in ["torch.bfloat16", "bfloat16"]:
            return Precision.bfloat16
        return Precision.Unknown

# Column selection
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
# print(COLS)

EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]

BENCHMARK_COLS = [t.value.col_name for t in Tasks]