File size: 8,646 Bytes
75754ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import torch
import onnxruntime as ort
from tqdm import tqdm
import warnings
import numpy as np
import hashlib
import queue
import threading

warnings.filterwarnings("ignore")

class MDX_Model:
    def __init__(self, device, dim_f, dim_t, n_fft, hop=1024, stem_name=None, compensation=1.000):
        self.dim_f = dim_f
        self.dim_t = dim_t
        self.dim_c = 4
        self.n_fft = n_fft
        self.hop = hop
        self.stem_name = stem_name
        self.compensation = compensation

        self.n_bins = self.n_fft//2+1
        self.chunk_size = hop * (self.dim_t-1)
        self.window = torch.hann_window(window_length=self.n_fft, periodic=True).to(device)

        out_c = self.dim_c

        self.freq_pad = torch.zeros([1, out_c, self.n_bins-self.dim_f, self.dim_t]).to(device)

    def stft(self, x):
        x = x.reshape([-1, self.chunk_size])
        x = torch.stft(x, n_fft=self.n_fft, hop_length=self.hop, window=self.window, center=True, return_complex=True)
        x = torch.view_as_real(x)
        x = x.permute([0,3,1,2])
        x = x.reshape([-1,2,2,self.n_bins,self.dim_t]).reshape([-1,4,self.n_bins,self.dim_t])
        return x[:,:,:self.dim_f]

    def istft(self, x, freq_pad=None):
        freq_pad = self.freq_pad.repeat([x.shape[0],1,1,1]) if freq_pad is None else freq_pad
        x = torch.cat([x, freq_pad], -2)
        # c = 4*2 if self.target_name=='*' else 2
        x = x.reshape([-1,2,2,self.n_bins,self.dim_t]).reshape([-1,2,self.n_bins,self.dim_t])
        x = x.permute([0,2,3,1])
        x = x.contiguous()
        x = torch.view_as_complex(x)
        x = torch.istft(x, n_fft=self.n_fft, hop_length=self.hop, window=self.window, center=True)
        return x.reshape([-1,2,self.chunk_size])


class MDX:

    DEFAULT_SR = 44100
    # Unit: seconds
    DEFAULT_CHUNK_SIZE = 0 * DEFAULT_SR
    DEFAULT_MARGIN_SIZE = 1 * DEFAULT_SR

    DEFAULT_PROCESSOR = 0

    def __init__(self, model_path:str, params:MDX_Model, processor=DEFAULT_PROCESSOR):

        # Set the device and the provider (CPU or CUDA)
        self.device = torch.device(f'cuda:{processor}') if processor >= 0 else torch.device('cpu')
        self.provider = ['CUDAExecutionProvider'] if processor >= 0 else ['CPUExecutionProvider']

        self.model = params

        # Load the ONNX model using ONNX Runtime
        self.ort = ort.InferenceSession(model_path, providers=self.provider)
        # Preload the model for faster performance
        self.ort.run(None, {'input':torch.rand(1, 4, params.dim_f, params.dim_t).numpy()})
        self.process = lambda spec:self.ort.run(None, {'input': spec.cpu().numpy()})[0]

        self.prog = None

    @staticmethod
    def get_hash(model_path):
        try:
            with open(model_path, 'rb') as f:
                f.seek(- 10000 * 1024, 2)
                model_hash = hashlib.md5(f.read()).hexdigest()
        except:
            model_hash = hashlib.md5(open(model_path,'rb').read()).hexdigest()
            
        return model_hash
    
    @staticmethod
    def segment(wave, combine=True, chunk_size=DEFAULT_CHUNK_SIZE, margin_size=DEFAULT_MARGIN_SIZE):
        """
        Segment or join segmented wave array
        Args:
            wave: (np.array) Wave array to be segmented or joined
            combine: (bool) If True, combines segmented wave array. If False, segments wave array.
            chunk_size: (int) Size of each segment (in samples)
            margin_size: (int) Size of margin between segments (in samples)
        Returns:
            numpy array: Segmented or joined wave array
        """
        
        if combine:
            processed_wave = None  # Initializing as None instead of [] for later numpy array concatenation
            for segment_count, segment in enumerate(wave):
                start = 0 if segment_count == 0 else margin_size
                end = None if segment_count == len(wave)-1 else -margin_size
                if margin_size == 0:
                    end = None
                if processed_wave is None:  # Create array for first segment
                    processed_wave = segment[:, start:end]
                else:  # Concatenate to existing array for subsequent segments
                    processed_wave = np.concatenate((processed_wave, segment[:, start:end]), axis=-1)

        else:
            processed_wave = []
            sample_count = wave.shape[-1]

            if chunk_size <= 0 or chunk_size > sample_count:
                chunk_size = sample_count

            if margin_size > chunk_size:
                margin_size = chunk_size

            for segment_count, skip in enumerate(range(0, sample_count, chunk_size)):

                margin = 0 if segment_count == 0 else margin_size
                end = min(skip+chunk_size+margin_size, sample_count)
                start = skip-margin

                cut = wave[:,start:end].copy()
                processed_wave.append(cut)

                if end == sample_count:
                    break
        
        return processed_wave

    def pad_wave(self, wave):
        """
        Pad the wave array to match the required chunk size
        Args:
            wave: (np.array) Wave array to be padded
        Returns:
            tuple: (padded_wave, pad, trim)
                - padded_wave: Padded wave array
                - pad: Number of samples that were padded
                - trim: Number of samples that were trimmed
        """
        n_sample = wave.shape[1]
        trim = self.model.n_fft//2
        gen_size = self.model.chunk_size-2*trim
        pad = gen_size - n_sample%gen_size

        # Padded wave
        wave_p = np.concatenate((np.zeros((2,trim)), wave, np.zeros((2,pad)), np.zeros((2,trim))), 1)

        mix_waves = []
        for i in range(0, n_sample+pad, gen_size):
            waves = np.array(wave_p[:, i:i+self.model.chunk_size])
            mix_waves.append(waves)

        mix_waves = torch.tensor(mix_waves, dtype=torch.float32).to(self.device)

        return mix_waves, pad, trim

    def _process_wave(self, mix_waves, trim, pad, q:queue.Queue, _id:int):
        """
        Process each wave segment in a multi-threaded environment
        Args:
            mix_waves: (torch.Tensor) Wave segments to be processed
            trim: (int) Number of samples trimmed during padding
            pad: (int) Number of samples padded during padding
            q: (queue.Queue) Queue to hold the processed wave segments
            _id: (int) Identifier of the processed wave segment
        Returns:
            numpy array: Processed wave segment
        """
        mix_waves = mix_waves.split(1)
        with torch.no_grad():
            pw = []
            for mix_wave in mix_waves:
                self.prog.update()
                spec = self.model.stft(mix_wave)
                processed_spec = torch.tensor(self.process(spec))
                processed_wav = self.model.istft(processed_spec.to(self.device))
                processed_wav = processed_wav[:,:,trim:-trim].transpose(0,1).reshape(2, -1).cpu().numpy()
                pw.append(processed_wav)
        processed_signal = np.concatenate(pw, axis=-1)[:, :-pad]
        q.put({_id:processed_signal})
        return processed_signal

    def process_wave(self, wave:np.array, mt_threads=1):
        """
        Process the wave array in a multi-threaded environment
        Args:
            wave: (np.array) Wave array to be processed
            mt_threads: (int) Number of threads to be used for processing
        Returns:
            numpy array: Processed wave array
        """
        self.prog = tqdm(total=0)
        chunk = wave.shape[-1]//mt_threads
        waves = self.segment(wave, False, chunk)

        # Create a queue to hold the processed wave segments
        q = queue.Queue()
        threads = []
        for c, batch in enumerate(waves):
            mix_waves, pad, trim = self.pad_wave(batch)
            self.prog.total = len(mix_waves)*mt_threads
            thread = threading.Thread(target=self._process_wave, args=(mix_waves, trim, pad, q, c))
            thread.start()
            threads.append(thread)
        for thread in threads:
            thread.join()
        self.prog.close()

        processed_batches = []
        while not q.empty():
            processed_batches.append(q.get())
        processed_batches = [list(wave.values())[0] for wave in sorted(processed_batches, key=lambda d: list(d.keys())[0])]
        assert len(processed_batches) == len(waves), 'Incomplete processed batches, please reduce batch size!'
        return self.segment(processed_batches, True, chunk)