VRAM-estimator / app.py
tvosch's picture
hardcode mixed precision off for inference
1023f27
import argparse
from functools import partial
import gradio as gr
from transformers import AutoConfig
from estimate_train_vram import training_vram_required, inference_vram_required
from vram_helpers import ModelConfig, TrainingConfig, filter_params_for_dataclass, PRECISION_TO_BYTES
ZERO_STAGES = [0, 1, 2, 3]
BATCH_SIZES = [1, 2, 4, 8, 16, 32, 64]
QUANTIZATION = PRECISION_TO_BYTES.keys()
OPTIMIZERS = ["adam", "adamw", "adamw_8bit", "sgd"]
HUGGINGFACE_URL_CONFIG = "https://huggingface.co/{}/resolve/main/config.json"
def parse_args():
parser = argparse.ArgumentParser(description="Parser for VRAM estimator")
parser.add_argument("--repo_id", type=str, default=None, help="HuggingFace repo id to automatically determine model settings")
parser.add_argument("--model_size", type=float, default=7, help="Model size (in billion parameters)")
parser.add_argument("--hidden_size", type=int, default=4096, help="Hidden size")
parser.add_argument("--sequence_length", type=int, default=8192, help="Sequence length")
parser.add_argument("--num_layers", type=int, default=32, help="Number of layers")
parser.add_argument("--num_heads", type=int, default=32, help="Number of heads")
parser.add_argument("--mixed_precision", action="store_false", help="Enable mixed precision for model training")
parser.add_argument("--precision", type=str, default="bf16", help="Model precision for training")
parser.add_argument("--micro_batch_size", type=int, default=4, help="Micro batch size (batch size per device/GPU)")
parser.add_argument("--zero_stage", type=int, default=0, choices=ZERO_STAGES, help="ZeRO optimization stage")
parser.add_argument("--gradient_checkpointing", action="store_false", help="Enable gradient checkpointing")
parser.add_argument("--optimizer", type=str, default="adamw", choices=OPTIMIZERS, help="Type of optimizer")
parser.add_argument("--num_gpus", type=int, default=4, help="Number of GPUs. Necessary for estimating ZeRO stages")
parser.add_argument("--cache_dir", type=str, default=None, help="HuggingFace cache directory to download config from")
parser.add_argument("--qlora", action="store_false", help="Enable QLoRA in case of finetuning")
parser.add_argument("--quantization", type=str, choices=QUANTIZATION, help="Type of quantization. Default is fp16/bf16")
parser.add_argument("--train", action="store_false", help="Flag to turn off train and run inference")
parser.add_argument("--total_sequence_length", type=int, default=0, help="Total sequence length (prompt + output) for inference")
parser.add_argument("--no-app", action="store_true", help="Launch gradio app. Otherwise, commandline output")
return parser
def download_config_from_hub(repo_id: str, cache_dir: str):
return AutoConfig.from_pretrained(pretrained_model_name_or_path=repo_id, cache_dir=cache_dir)
def scrape_config_from_hub(repo_id):
import requests
url = HUGGINGFACE_URL_CONFIG.format(repo_id)
try:
print(f"Fetching config.json from the following URL: {url}...")
response = requests.get(url)
response.raise_for_status() # Raises a HTTPError if the status is 4xx, 5xx
config = response.json()
print(f"Fetched the config for model {repo_id} succesfully!")
except requests.exceptions.HTTPError as errh:
print(f"HTTP Error: {errh}")
except requests.exceptions.ConnectionError as errc:
print(f"Error Connecting: {errc}")
except requests.exceptions.Timeout as errt:
print(f"Timeout Error: {errt}")
except requests.exceptions.RequestException as err:
print(f"Something went wrong: {err}")
except ValueError as e:
print(f"Error decoding JSON: {e}")
return config
def build_interface(estimate_vram_fn):
with gr.Blocks() as app:
gr.Markdown("## 1. Select HuggingFace model from a repository or choose your own model parameters")
model_option = gr.Radio(["Repo ID", "Model Parameters"], label="Select Input Type")
repo_id = gr.Textbox(label="Repo ID", visible=False, placeholder="mistralai/Mistral-7B-v0.1")
with gr.Row(visible=False) as model_params_row:
model_params = [gr.Slider(label="Model Size", minimum=0.1, maximum=400, step=0.1, value=7, info="Model size (in billion parameters)"),
gr.Slider(label="Hidden size", minimum=256, maximum=8192, step=128, value=4096, info="Hidden size"),
gr.Slider(label="Sequence length", minimum=128, maximum=128_000, step=256, value=8192, info="Sequence length"),
gr.Slider(label="Num layers", minimum=8, maximum=64, step=1, value=32, info="Number of layers"),
gr.Slider(label="Num heads", minimum=8, maximum=64, step=1, value=32, info="Number of attention heads")
]
def update_visibility_model_type(selected_option, choices):
"""
Dynamically update the visibility of components based on the selected option.
:param selected_option: The currently selected option
:param choices: Variable number of tuples, each containing (option_value, component)
:return: List of gr.update() calls corresponding to each choice
"""
updates = []
for option_value, _ in choices:
updates.append(gr.update(visible=(selected_option == option_value)))
return updates
model_option_choices = [("Repo ID", repo_id), ("Model Parameters", model_params_row)]
model_option.change(
fn=partial(update_visibility_model_type, choices=model_option_choices),
inputs=[model_option],
outputs=[repo_id, model_params_row],
)
gr.Markdown("## 2. Select training or inference parameters")
training_option = gr.Radio(["Training", "Inference"], label="Select Input Type")
with gr.Row(equal_height=True, visible=False) as training_params_row:
training_params = [gr.Dropdown(label="Micro batch size", choices=BATCH_SIZES, value=4, info="Micro batch size (batch size per device/GPU)"),
gr.Dropdown(label="ZeRO stage", choices=ZERO_STAGES, value=0, info="ZeRO optimization stage"),
gr.Dropdown(label="Gradient checkpointing", choices=[True, False], value=True, info="Enable gradient checkpointing"),
gr.Dropdown(label="Mixed precision", choices=[False, True], value=False, info="Enable mixed precision for model training"),
gr.Dropdown(label="Optimizer", choices=OPTIMIZERS, value="adamw", info="Type of optimizer"),
gr.Dropdown(label="QLoRA", choices=[False, True], value=False, info="Finetune with QLoRA enabled"),
gr.Slider(label="Num GPUs", minimum=1, maximum=256, step=1, value=4, info="Number of GPUs. Necessary for estimating ZeRO stages"),
]
with gr.Row(equal_height=True, visible=False) as inference_params_row:
inference_params = [gr.Dropdown(label="Quantization", choices=QUANTIZATION, value="fp16", info="Quantization of model"),
gr.Slider(label="Num GPUs", minimum=1, maximum=256, step=1, value=1, info="Number of GPUs"),
gr.Dropdown(label="Micro batch size", choices=BATCH_SIZES, value=1, info="Micro batch size (batch size per device/GPU)"),
gr.Slider(label="Total sequence length", minimum=128, maximum=128_000, value=0, info="Total sequence length to run (necessary for KV cache calculation")
]
training_option_choices = [("Training", inference_params_row), ("Inference", training_params_row)]
training_option.change(
fn=partial(update_visibility_model_type, choices=training_option_choices),
inputs=[training_option],
outputs=[training_params_row, inference_params_row],
)
submit_btn = gr.Button("Estimate!")
output = gr.Textbox(label="Total estimated VRAM per device/GPU (in GB)")
def create_combined_params_dict(repo_id, training_option, *values):
all_params = model_params + training_params + inference_params
combined_dict = {param.label.lower().replace(" ", "_"): value for param, value in zip(all_params, values)}
combined_dict["repo_id"] = repo_id
combined_dict["train"] = True if training_option.lower() == "training" else False # False -> inference
return combined_dict
submit_btn.click(
fn=lambda repo_id, training_option, *values: estimate_vram_fn(create_combined_params_dict(repo_id, training_option, *values)),
inputs=[repo_id, training_option] + model_params + training_params + inference_params,
outputs=[output]
)
return app
def estimate_vram(cache_dir, gradio_params):
model_config = ModelConfig(**filter_params_for_dataclass(ModelConfig, gradio_params))
training_config = TrainingConfig(**filter_params_for_dataclass(TrainingConfig, gradio_params))
# Update model config
if not gradio_params["repo_id"]:
return "No model selected!"
# By default, scrape config.json from hub
config = download_config_from_hub(gradio_params["repo_id"], cache_dir)# gradio_params["cache_dir"])
model_config.overwrite_with_hf_config(config.to_dict())
if training_config.train:
total_vram_dict = training_vram_required(model_config, training_config)
output_str = f"Total {total_vram_dict['total']}GB = {total_vram_dict['model']}GB (model) + {total_vram_dict['gradients']}GB (gradients) + {total_vram_dict['optimizer']}GB (optimizer) + {total_vram_dict['activations']}GB (activations)"
else: # inference
total_vram_dict = inference_vram_required(model_config, training_config)
output_str = f"Total {total_vram_dict['total']}GB = {total_vram_dict['model']}GB (model) + {total_vram_dict['kv_cache']}GB (KV cache) + {total_vram_dict['activations']}GB (activations)"
return output_str
if __name__ == "__main__":
parser = parse_args()
args = parser.parse_args()
# Launch gradio interface
if not args.no_app:
import gradio as gr
estimate_vram_fn = partial(estimate_vram, args.cache_dir)
interface = build_interface(estimate_vram_fn)
interface.launch()
# Command line interface
else:
model_config = ModelConfig(**filter_params_for_dataclass(ModelConfig, vars(args)))
training_config = TrainingConfig(**filter_params_for_dataclass(TrainingConfig, vars(args)))
if args.repo_id:
# If cache directory set, then download config
if args.cache_dir:
config = download_config_from_hub(args.repo_id, args.cache_dir).to_dict()
# By default, scrape config.json from hub
else:
config = scrape_config_from_hub(args.repo_id)
model_config.overwrite_with_hf_config(config)
if training_config.train:
total_vram_dict = training_vram_required(model_config, training_config)
output_str = f"Total {total_vram_dict['total']}GB = {total_vram_dict['model']}GB (model) + {total_vram_dict['gradients']}GB (gradients) + {total_vram_dict['optimizer']}GB (optimizer) + {total_vram_dict['activations']}GB activations"
else: # inference
total_vram_dict = inference_vram_required(model_config, training_config)
output_str = f"Total {total_vram_dict['total']}GB = {total_vram_dict['model']}GB (model) + {total_vram_dict['kv_cache']}GB (KV cache) + {total_vram_dict['activations']}GB activations"
print(output_str)