donut-booking-gradio / lightning_module.py
uartimcs's picture
Upload folder using huggingface_hub
1cc5dab verified
raw
history blame
7.77 kB
"""
Donut
Copyright (c) 2022-present NAVER Corp.
MIT License
"""
import math
import random
import re
from pathlib import Path
import numpy as np
import pytorch_lightning as pl
import torch
from nltk import edit_distance
from pytorch_lightning.utilities import rank_zero_only
from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from torch.nn.utils.rnn import pad_sequence
from torch.optim.lr_scheduler import LambdaLR
from torch.utils.data import DataLoader
from donut import DonutConfig, DonutModel
class DonutModelPLModule(pl.LightningModule):
def __init__(self, config):
super().__init__()
self.config = config
if self.config.get("pretrained_model_name_or_path", False):
self.model = DonutModel.from_pretrained(
self.config.pretrained_model_name_or_path,
input_size=self.config.input_size,
max_length=self.config.max_length,
align_long_axis=self.config.align_long_axis,
ignore_mismatched_sizes=True,
)
else:
self.model = DonutModel(
config=DonutConfig(
input_size=self.config.input_size,
max_length=self.config.max_length,
align_long_axis=self.config.align_long_axis,
# with DonutConfig, the architecture customization is available, e.g.,
# encoder_layer=[2,2,14,2], decoder_layer=4, ...
)
)
self.pytorch_lightning_version_is_1 = int(pl.__version__[0]) < 2
self.num_of_loaders = len(self.config.dataset_name_or_paths)
def training_step(self, batch, batch_idx):
image_tensors, decoder_input_ids, decoder_labels = list(), list(), list()
for batch_data in batch:
image_tensors.append(batch_data[0])
decoder_input_ids.append(batch_data[1][:, :-1])
decoder_labels.append(batch_data[2][:, 1:])
image_tensors = torch.cat(image_tensors)
decoder_input_ids = torch.cat(decoder_input_ids)
decoder_labels = torch.cat(decoder_labels)
loss = self.model(image_tensors, decoder_input_ids, decoder_labels)[0]
self.log_dict({"train_loss": loss}, sync_dist=True)
if not self.pytorch_lightning_version_is_1:
self.log('loss', loss, prog_bar=True)
return loss
def on_validation_epoch_start(self) -> None:
super().on_validation_epoch_start()
self.validation_step_outputs = [[] for _ in range(self.num_of_loaders)]
return
def validation_step(self, batch, batch_idx, dataloader_idx=0):
image_tensors, decoder_input_ids, prompt_end_idxs, answers = batch
decoder_prompts = pad_sequence(
[input_id[: end_idx + 1] for input_id, end_idx in zip(decoder_input_ids, prompt_end_idxs)],
batch_first=True,
)
preds = self.model.inference(
image_tensors=image_tensors,
prompt_tensors=decoder_prompts,
return_json=False,
return_attentions=False,
)["predictions"]
scores = list()
for pred, answer in zip(preds, answers):
pred = re.sub(r"(?:(?<=>) | (?=</s_))", "", pred)
answer = re.sub(r"<.*?>", "", answer, count=1)
answer = answer.replace(self.model.decoder.tokenizer.eos_token, "")
scores.append(edit_distance(pred, answer) / max(len(pred), len(answer)))
if self.config.get("verbose", False) and len(scores) == 1:
self.print(f"Prediction: {pred}")
self.print(f" Answer: {answer}")
self.print(f" Normed ED: {scores[0]}")
self.validation_step_outputs[dataloader_idx].append(scores)
return scores
def on_validation_epoch_end(self):
assert len(self.validation_step_outputs) == self.num_of_loaders
cnt = [0] * self.num_of_loaders
total_metric = [0] * self.num_of_loaders
val_metric = [0] * self.num_of_loaders
for i, results in enumerate(self.validation_step_outputs):
for scores in results:
cnt[i] += len(scores)
total_metric[i] += np.sum(scores)
val_metric[i] = total_metric[i] / cnt[i]
val_metric_name = f"val_metric_{i}th_dataset"
self.log_dict({val_metric_name: val_metric[i]}, sync_dist=True)
self.log_dict({"val_metric": np.sum(total_metric) / np.sum(cnt)}, sync_dist=True)
def configure_optimizers(self):
max_iter = None
if int(self.config.get("max_epochs", -1)) > 0:
assert len(self.config.train_batch_sizes) == 1, "Set max_epochs only if the number of datasets is 1"
max_iter = (self.config.max_epochs * self.config.num_training_samples_per_epoch) / (
self.config.train_batch_sizes[0] * torch.cuda.device_count() * self.config.get("num_nodes", 1)
)
if int(self.config.get("max_steps", -1)) > 0:
max_iter = min(self.config.max_steps, max_iter) if max_iter is not None else self.config.max_steps
assert max_iter is not None
optimizer = torch.optim.Adam(self.parameters(), lr=self.config.lr)
scheduler = {
"scheduler": self.cosine_scheduler(optimizer, max_iter, self.config.warmup_steps),
"name": "learning_rate",
"interval": "step",
}
return [optimizer], [scheduler]
@staticmethod
def cosine_scheduler(optimizer, training_steps, warmup_steps):
def lr_lambda(current_step):
if current_step < warmup_steps:
return current_step / max(1, warmup_steps)
progress = current_step - warmup_steps
progress /= max(1, training_steps - warmup_steps)
return max(0.0, 0.5 * (1.0 + math.cos(math.pi * progress)))
return LambdaLR(optimizer, lr_lambda)
@rank_zero_only
def on_save_checkpoint(self, checkpoint):
save_path = Path(self.config.result_path) / self.config.exp_name / self.config.exp_version
self.model.save_pretrained(save_path)
self.model.decoder.tokenizer.save_pretrained(save_path)
class DonutDataPLModule(pl.LightningDataModule):
def __init__(self, config):
super().__init__()
self.config = config
self.train_batch_sizes = self.config.train_batch_sizes
self.val_batch_sizes = self.config.val_batch_sizes
self.train_datasets = []
self.val_datasets = []
self.g = torch.Generator()
self.g.manual_seed(self.config.seed)
def train_dataloader(self):
loaders = list()
for train_dataset, batch_size in zip(self.train_datasets, self.train_batch_sizes):
loaders.append(
DataLoader(
train_dataset,
batch_size=batch_size,
num_workers=self.config.num_workers,
pin_memory=True,
worker_init_fn=self.seed_worker,
generator=self.g,
shuffle=True,
)
)
return loaders
def val_dataloader(self):
loaders = list()
for val_dataset, batch_size in zip(self.val_datasets, self.val_batch_sizes):
loaders.append(
DataLoader(
val_dataset,
batch_size=batch_size,
pin_memory=True,
shuffle=False,
)
)
return loaders
@staticmethod
def seed_worker(wordker_id):
worker_seed = torch.initial_seed() % 2 ** 32
np.random.seed(worker_seed)
random.seed(worker_seed)