Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torchvision.models as models | |
from torch import Tensor | |
# __all__ = [ | |
# "ResidualConvBlock", | |
# "Discriminator", "Generator", | |
# ] | |
class ResidualConvBlock(nn.Module): | |
"""Implements residual conv function. | |
Args: | |
channels (int): Number of channels in the input image. | |
""" | |
def __init__(self, channels: int) -> None: | |
super(ResidualConvBlock, self).__init__() | |
self.rcb = nn.Sequential( | |
nn.Conv2d(channels, channels, (3, 3), (1, 1), (1, 1), bias=False), | |
nn.BatchNorm2d(channels), | |
nn.PReLU(), | |
nn.Conv2d(channels, channels, (3, 3), (1, 1), (1, 1), bias=False), | |
nn.BatchNorm2d(channels), | |
) | |
def forward(self, x: Tensor) -> Tensor: | |
identity = x | |
out = self.rcb(x) | |
out = torch.add(out, identity) | |
return out | |
class Discriminator(nn.Module): | |
def __init__(self) -> None: | |
super(Discriminator, self).__init__() | |
self.features = nn.Sequential( | |
# input size. (3) x 96 x 96 | |
nn.Conv2d(3, 64, (3, 3), (1, 1), (1, 1), bias=False), | |
nn.LeakyReLU(0.2, True), | |
# state size. (64) x 48 x 48 | |
nn.Conv2d(64, 64, (3, 3), (2, 2), (1, 1), bias=False), | |
nn.BatchNorm2d(64), | |
nn.LeakyReLU(0.2, True), | |
nn.Conv2d(64, 128, (3, 3), (1, 1), (1, 1), bias=False), | |
nn.BatchNorm2d(128), | |
nn.LeakyReLU(0.2, True), | |
# state size. (128) x 24 x 24 | |
nn.Conv2d(128, 128, (3, 3), (2, 2), (1, 1), bias=False), | |
nn.BatchNorm2d(128), | |
nn.LeakyReLU(0.2, True), | |
nn.Conv2d(128, 256, (3, 3), (1, 1), (1, 1), bias=False), | |
nn.BatchNorm2d(256), | |
nn.LeakyReLU(0.2, True), | |
# state size. (256) x 12 x 12 | |
nn.Conv2d(256, 256, (3, 3), (2, 2), (1, 1), bias=False), | |
nn.BatchNorm2d(256), | |
nn.LeakyReLU(0.2, True), | |
nn.Conv2d(256, 512, (3, 3), (1, 1), (1, 1), bias=False), | |
nn.BatchNorm2d(512), | |
nn.LeakyReLU(0.2, True), | |
# state size. (512) x 6 x 6 | |
nn.Conv2d(512, 512, (3, 3), (2, 2), (1, 1), bias=False), | |
nn.BatchNorm2d(512), | |
nn.LeakyReLU(0.2, True), | |
) | |
self.classifier = nn.Sequential( | |
nn.Linear(512 * 6 * 6, 1024), | |
nn.LeakyReLU(0.2, True), | |
nn.Linear(1024, 1), | |
) | |
def forward(self, x: Tensor) -> Tensor: | |
out = self.features(x) | |
out = torch.flatten(out, 1) | |
out = self.classifier(out) | |
return out | |
class Generator(nn.Module): | |
def __init__(self) -> None: | |
super(Generator, self).__init__() | |
# First conv layer. | |
self.conv_block1 = nn.Sequential( | |
nn.Conv2d(3, 64, (9, 9), (1, 1), (4, 4)), | |
nn.PReLU(), | |
) | |
# Features trunk blocks. | |
trunk = [] | |
for _ in range(16): | |
trunk.append(ResidualConvBlock(64)) | |
self.trunk = nn.Sequential(*trunk) | |
# Second conv layer. | |
self.conv_block2 = nn.Sequential( | |
nn.Conv2d(64, 64, (3, 3), (1, 1), (1, 1), bias=False), | |
nn.BatchNorm2d(64), | |
) | |
# Upscale conv block. | |
self.upsampling = nn.Sequential( | |
nn.Conv2d(64, 256, (3, 3), (1, 1), (1, 1)), | |
nn.PixelShuffle(2), | |
nn.PReLU(), | |
nn.Conv2d(64, 256, (3, 3), (1, 1), (1, 1)), | |
nn.PixelShuffle(2), | |
nn.PReLU(), | |
) | |
# Output layer. | |
self.conv_block3 = nn.Conv2d(64, 3, (9, 9), (1, 1), (4, 4)) | |
# Initialize neural network weights. | |
self._initialize_weights() | |
def forward(self, x: Tensor, dop=None) -> Tensor: | |
if not dop: | |
return self._forward_impl(x) | |
else: | |
return self._forward_w_dop_impl(x, dop) | |
# Support torch.script function. | |
def _forward_impl(self, x: Tensor) -> Tensor: | |
out1 = self.conv_block1(x) | |
out = self.trunk(out1) | |
out2 = self.conv_block2(out) | |
out = torch.add(out1, out2) | |
out = self.upsampling(out) | |
out = self.conv_block3(out) | |
return out | |
def _forward_w_dop_impl(self, x: Tensor, dop) -> Tensor: | |
out1 = self.conv_block1(x) | |
out = self.trunk(out1) | |
out2 = F.dropout2d(self.conv_block2(out), p=dop) | |
out = torch.add(out1, out2) | |
out = self.upsampling(out) | |
out = self.conv_block3(out) | |
return out | |
def _initialize_weights(self) -> None: | |
for module in self.modules(): | |
if isinstance(module, nn.Conv2d): | |
nn.init.kaiming_normal_(module.weight) | |
if module.bias is not None: | |
nn.init.constant_(module.bias, 0) | |
elif isinstance(module, nn.BatchNorm2d): | |
nn.init.constant_(module.weight, 1) | |
#### BayesCap | |
class BayesCap(nn.Module): | |
def __init__(self, in_channels=3, out_channels=3) -> None: | |
super(BayesCap, self).__init__() | |
# First conv layer. | |
self.conv_block1 = nn.Sequential( | |
nn.Conv2d( | |
in_channels, 64, | |
kernel_size=9, stride=1, padding=4 | |
), | |
nn.PReLU(), | |
) | |
# Features trunk blocks. | |
trunk = [] | |
for _ in range(16): | |
trunk.append(ResidualConvBlock(64)) | |
self.trunk = nn.Sequential(*trunk) | |
# Second conv layer. | |
self.conv_block2 = nn.Sequential( | |
nn.Conv2d( | |
64, 64, | |
kernel_size=3, stride=1, padding=1, bias=False | |
), | |
nn.BatchNorm2d(64), | |
) | |
# Output layer. | |
self.conv_block3_mu = nn.Conv2d( | |
64, out_channels=out_channels, | |
kernel_size=9, stride=1, padding=4 | |
) | |
self.conv_block3_alpha = nn.Sequential( | |
nn.Conv2d( | |
64, 64, | |
kernel_size=9, stride=1, padding=4 | |
), | |
nn.PReLU(), | |
nn.Conv2d( | |
64, 64, | |
kernel_size=9, stride=1, padding=4 | |
), | |
nn.PReLU(), | |
nn.Conv2d( | |
64, 1, | |
kernel_size=9, stride=1, padding=4 | |
), | |
nn.ReLU(), | |
) | |
self.conv_block3_beta = nn.Sequential( | |
nn.Conv2d( | |
64, 64, | |
kernel_size=9, stride=1, padding=4 | |
), | |
nn.PReLU(), | |
nn.Conv2d( | |
64, 64, | |
kernel_size=9, stride=1, padding=4 | |
), | |
nn.PReLU(), | |
nn.Conv2d( | |
64, 1, | |
kernel_size=9, stride=1, padding=4 | |
), | |
nn.ReLU(), | |
) | |
# Initialize neural network weights. | |
self._initialize_weights() | |
def forward(self, x: Tensor) -> Tensor: | |
return self._forward_impl(x) | |
# Support torch.script function. | |
def _forward_impl(self, x: Tensor) -> Tensor: | |
out1 = self.conv_block1(x) | |
out = self.trunk(out1) | |
out2 = self.conv_block2(out) | |
out = out1 + out2 | |
out_mu = self.conv_block3_mu(out) | |
out_alpha = self.conv_block3_alpha(out) | |
out_beta = self.conv_block3_beta(out) | |
return out_mu, out_alpha, out_beta | |
def _initialize_weights(self) -> None: | |
for module in self.modules(): | |
if isinstance(module, nn.Conv2d): | |
nn.init.kaiming_normal_(module.weight) | |
if module.bias is not None: | |
nn.init.constant_(module.bias, 0) | |
elif isinstance(module, nn.BatchNorm2d): | |
nn.init.constant_(module.weight, 1) | |
class BayesCap_noID(nn.Module): | |
def __init__(self, in_channels=3, out_channels=3) -> None: | |
super(BayesCap_noID, self).__init__() | |
# First conv layer. | |
self.conv_block1 = nn.Sequential( | |
nn.Conv2d( | |
in_channels, 64, | |
kernel_size=9, stride=1, padding=4 | |
), | |
nn.PReLU(), | |
) | |
# Features trunk blocks. | |
trunk = [] | |
for _ in range(16): | |
trunk.append(ResidualConvBlock(64)) | |
self.trunk = nn.Sequential(*trunk) | |
# Second conv layer. | |
self.conv_block2 = nn.Sequential( | |
nn.Conv2d( | |
64, 64, | |
kernel_size=3, stride=1, padding=1, bias=False | |
), | |
nn.BatchNorm2d(64), | |
) | |
# Output layer. | |
# self.conv_block3_mu = nn.Conv2d( | |
# 64, out_channels=out_channels, | |
# kernel_size=9, stride=1, padding=4 | |
# ) | |
self.conv_block3_alpha = nn.Sequential( | |
nn.Conv2d( | |
64, 64, | |
kernel_size=9, stride=1, padding=4 | |
), | |
nn.PReLU(), | |
nn.Conv2d( | |
64, 64, | |
kernel_size=9, stride=1, padding=4 | |
), | |
nn.PReLU(), | |
nn.Conv2d( | |
64, 1, | |
kernel_size=9, stride=1, padding=4 | |
), | |
nn.ReLU(), | |
) | |
self.conv_block3_beta = nn.Sequential( | |
nn.Conv2d( | |
64, 64, | |
kernel_size=9, stride=1, padding=4 | |
), | |
nn.PReLU(), | |
nn.Conv2d( | |
64, 64, | |
kernel_size=9, stride=1, padding=4 | |
), | |
nn.PReLU(), | |
nn.Conv2d( | |
64, 1, | |
kernel_size=9, stride=1, padding=4 | |
), | |
nn.ReLU(), | |
) | |
# Initialize neural network weights. | |
self._initialize_weights() | |
def forward(self, x: Tensor) -> Tensor: | |
return self._forward_impl(x) | |
# Support torch.script function. | |
def _forward_impl(self, x: Tensor) -> Tensor: | |
out1 = self.conv_block1(x) | |
out = self.trunk(out1) | |
out2 = self.conv_block2(out) | |
out = out1 + out2 | |
# out_mu = self.conv_block3_mu(out) | |
out_alpha = self.conv_block3_alpha(out) | |
out_beta = self.conv_block3_beta(out) | |
return out_alpha, out_beta | |
def _initialize_weights(self) -> None: | |
for module in self.modules(): | |
if isinstance(module, nn.Conv2d): | |
nn.init.kaiming_normal_(module.weight) | |
if module.bias is not None: | |
nn.init.constant_(module.bias, 0) | |
elif isinstance(module, nn.BatchNorm2d): | |
nn.init.constant_(module.weight, 1) |