File size: 5,708 Bytes
5d3b8a6
7d1df38
 
 
 
 
 
 
 
 
 
 
 
 
f307fe5
7d1df38
 
 
 
 
 
 
 
 
65193db
a8416ee
3150e77
 
214bd84
09da12b
214bd84
4dab50d
65193db
4dab50d
79c7b01
f307fe5
a8416ee
f307fe5
79c7b01
4dab50d
65193db
4dab50d
79c7b01
ab30850
 
 
79c7b01
 
09da12b
 
 
 
 
1df8b5f
79c7b01
7d1df38
 
 
 
 
 
 
 
7cc986f
7d1df38
 
 
 
 
 
 
b80df5c
 
 
 
16484d3
b80df5c
250dc27
b80df5c
c838395
ed768de
 
b58ad35
 
11ab28e
 
 
 
 
 
 
b58ad35
 
 
 
 
 
d92334f
b80df5c
7d1df38
 
 
 
4dab50d
7d1df38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11ab28e
7d1df38
 
 
 
 
 
 
 
 
 
 
 
 
 
defbed4
 
7d1df38
2fd38cf
5d3b8a6
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import streamlit as st
from huggingface_hub import hf_hub_url, cached_download
from PIL import Image
import os
import json
import glob
import random
from typing import Any, Dict, List
import torch
import torchvision

import wordsegment as ws

from virtex.config import Config
from virtex.factories import TokenizerFactory, PretrainingModelFactory, ImageTransformsFactory
from virtex.utils.checkpointing import CheckpointManager

CONFIG_PATH = "config.yaml"
MODEL_PATH = "checkpoint_last5.pth"
VALID_SUBREDDITS_PATH = "subreddit_list.json"
SAMPLES_PATH = "./samples/*.jpg"

class ImageLoader():
    def __init__(self):
        self.image_transform = torchvision.transforms.Compose([
                               torchvision.transforms.ToTensor(),
                               torchvision.transforms.Resize(256),
                               torchvision.transforms.CenterCrop(224),
                               torchvision.transforms.Normalize((.485, .456, .406), (.229, .224, .225))])
        self.show_size=500
        
    def load(self, im_path):
        im = torch.FloatTensor(self.image_transform(Image.open(im_path))).unsqueeze(0)
        return {"image": im}
    
    def raw_load(self, im_path):
        im = torch.FloatTensor(Image.open(im_path))
        return {"image": im}
    
    def transform(self, image):
        im = torch.FloatTensor(self.image_transform(image)).unsqueeze(0)
        return {"image": im}
    
    def text_transform(self, text):
        # at present just lowercasing:
        return text.lower()
    
    def show_resize(self, image):
        # ugh we need to do this manually cuz this is pytorch==0.8 not 1.9 lol
        image = torchvision.transforms.functional.to_tensor(image)
        x,y = image.shape[-2:]
        ratio = float(self.show_size/max((x,y)))
        image = torchvision.transforms.functional.resize(image, [int(x * ratio), int(y * ratio)])
        return torchvision.transforms.functional.to_pil_image(image)
    

class VirTexModel():
    def __init__(self):
        self.config = Config(CONFIG_PATH)
        ws.load()
        self.device = 'cpu'
        self.tokenizer = TokenizerFactory.from_config(self.config)
        self.model = PretrainingModelFactory.from_config(self.config).to(self.device)
        CheckpointManager(model=self.model).load(MODEL_PATH)
        self.model.eval()
        self.valid_subs = json.load(open(VALID_SUBREDDITS_PATH))
        
    def predict(self, image_dict, sub_prompt = None, prompt = ""):
        if sub_prompt is None:
            subreddit_tokens = torch.tensor([self.model.sos_index], device=self.device).long()
        else:
            subreddit_tokens = " ".join(ws.segment(ws.clean(sub_prompt)))
            subreddit_tokens = (
                [self.model.sos_index] + 
                self.tokenizer.encode(subreddit_tokens) +
                [self.tokenizer.token_to_id("[SEP]")]
                               )
            subreddit_tokens = torch.tensor(subreddit_tokens, device=self.device).long()
            
        if prompt is not "":
            # at present prompts without subreddits will break without this change
            # TODO FIX
            cap_tokens = self.tokenizer.encode(prompt)
            cap_tokens = torch.tensor(cap_tokens, device=self.device).long()
            subreddit_tokens = subreddit_tokens if sub_prompt is not None else torch.tensor(
                (
                    [self.model.sos_index] + 
                    self.tokenizer.encode("pics") + 
                    [self.tokenizer.token_to_id("[SEP]")]
                ), device = self.device).long()

            subreddit_tokens = torch.cat(
                [
                    subreddit_tokens,
                    torch.tensor([self.tokenizer.token_to_id("[SEP]")], device=self.device).long(),
                    cap_tokens
                ])
            
            
        predictions: List[Dict[str, Any]] = []
        
        is_valid_subreddit = False
        subreddit, rest_of_caption = "", ""
        image_dict["decode_prompt"] = subreddit_tokens
        while not is_valid_subreddit:
            
            with torch.no_grad():
                caption = self.model(image_dict)["predictions"][0].tolist()
                
            if self.tokenizer.token_to_id("[SEP]") in caption:
                sep_index = caption.index(self.tokenizer.token_to_id("[SEP]"))
                caption[sep_index] = self.tokenizer.token_to_id("://")
            
            caption = self.tokenizer.decode(caption)
            
            if "://" in caption:
                subreddit, rest_of_caption = caption.split("://")
                subreddit = "".join(subreddit.split())
                rest_of_caption = rest_of_caption.strip()
            else:
                subreddit, rest_of_caption = "", caption
            
            is_valid_subreddit = subreddit in self.valid_subs
            
            
        return subreddit, rest_of_caption

def download_files():
    #download model files
    download_files = [CONFIG_PATH, MODEL_PATH, VALID_SUBREDDITS_PATH]
    for f in download_files:
        fp = cached_download(hf_hub_url("zamborg/redcaps", filename=f))
        os.system(f"cp {fp} ./{f}")

def get_samples():
    return glob.glob(SAMPLES_PATH)

def get_rand_idx(samples):
    return random.randint(0,len(samples)-1)

@st.cache(allow_output_mutation=True) # allow mutation to update nucleus size
def create_objects():
    sample_images = get_samples()
    virtexModel = VirTexModel()
    imageLoader = ImageLoader()
    valid_subs = json.load(open(VALID_SUBREDDITS_PATH))
    valid_subs.insert(0, None)
    return virtexModel, imageLoader, sample_images, valid_subs