virtex-redcaps / virtex /factories.py
kdexd's picture
Black + isort, remove unused virtx files.
8d0e872
r"""
This module is a collection of *factories* for creating objects of datasets,
models, optimizers and other useful components. For example, a ResNet-50
visual backbone can be created as:
.. code-block:: python
>>> # Explicitly by name, args and kwargs:
>>> backbone = VisualBackboneFactory.create(
... "torchvision::resnet50", pretrained=False
... )
>>> # Directly from a config object:
>>> _C = Config(override_list=["MODEL.VISUAL.NAME", "torchvision::resnet50"])
>>> backbone = VisualBackboneFactory.from_config(_C)
Creating directly from :class:`~virtex.config.Config` is fast and simple, and
ensures minimal changes throughout the codebase upon any change in the call
signature of underlying class; or config hierarchy. Refer description of
specific factories for more details.
"""
import re
from functools import partial
from typing import Any, Callable, Dict, Iterable, List
import albumentations as alb
from torch import nn, optim
import virtex.data as vdata
import virtex.models as vmodels
import virtex.utils.distributed as dist
from virtex.config import Config
from virtex.data import transforms as T
from virtex.data.tokenizers import SentencePieceBPETokenizer
from virtex.modules import visual_backbones, textual_heads
from virtex.optim import Lookahead, lr_scheduler
from virtex.utils.beam_search import AutoRegressiveBeamSearch
from virtex.utils.nucleus_sampling import AutoRegressiveNucleusSampling
class Factory(object):
r"""
Base class for all factories. All factories must inherit this base class
and follow these guidelines for a consistent behavior:
* Factory objects cannot be instantiated, doing ``factory = SomeFactory()``
is illegal. Child classes should not implement ``__init__`` methods.
* All factories must have an attribute named ``PRODUCTS`` of type
``Dict[str, Callable]``, which associates each class with a unique string
name which can be used to create it.
* All factories must implement one classmethod, :meth:`from_config` which
contains logic for creating an object directly by taking name and other
arguments directly from :class:`~virtex.config.Config`. They can use
:meth:`create` already implemented in this base class.
* :meth:`from_config` should not use too many extra arguments than the
config itself, unless necessary (such as model parameters for optimizer).
"""
PRODUCTS: Dict[str, Callable] = {}
def __init__(self):
raise ValueError(
f"""Cannot instantiate {self.__class__.__name__} object, use
`create` classmethod to create a product from this factory.
"""
)
@classmethod
def create(cls, name: str, *args, **kwargs) -> Any:
r"""Create an object by its name, args and kwargs."""
if name not in cls.PRODUCTS:
raise KeyError(f"{cls.__class__.__name__} cannot create {name}.")
return cls.PRODUCTS[name](*args, **kwargs)
@classmethod
def from_config(cls, config: Config) -> Any:
r"""Create an object directly from config."""
raise NotImplementedError
class TokenizerFactory(Factory):
r"""
Factory to create text tokenizers. This codebase ony supports one tokenizer
for now, but having a dedicated factory makes it easy to add more if needed.
Possible choices: ``{"SentencePieceBPETokenizer"}``.
"""
PRODUCTS: Dict[str, Callable] = {
"SentencePieceBPETokenizer": SentencePieceBPETokenizer
}
@classmethod
def from_config(cls, config: Config) -> SentencePieceBPETokenizer:
r"""
Create a tokenizer directly from config.
Parameters
----------
config: virtex.config.Config
Config object with all the parameters.
"""
_C = config
tokenizer = cls.create(
"SentencePieceBPETokenizer", model_path=_C.DATA.TOKENIZER_MODEL
)
return tokenizer
class ImageTransformsFactory(Factory):
r"""
Factory to create image transformations for common preprocessing and data
augmentations. These are a mix of default transformations from
`albumentations <https://albumentations.readthedocs.io/en/latest/>`_ and
some extended ones defined in :mod:`virtex.data.transforms`.
It uses sensible default values, however they can be provided with the name
in dict syntax. Example: ``random_resized_crop::{'scale': (0.08, 1.0)}``
.. note::
This factory does not implement :meth:`from_config` method. It is only
used by :class:`PretrainingDatasetFactory` and
:class:`DownstreamDatasetFactory`.
Possible choices: ``{"center_crop", "horizontal_flip", "random_resized_crop",
"normalize", "global_resize", "color_jitter", "smallest_resize"}``.
"""
# fmt: off
PRODUCTS: Dict[str, Callable] = {
# Input resize transforms: whenever selected, these are always applied.
# These transforms require one position argument: image dimension.
"random_resized_crop": partial(
T.RandomResizedSquareCrop, scale=(0.2, 1.0), ratio=(0.75, 1.333), p=1.0
),
"center_crop": partial(T.CenterSquareCrop, p=1.0),
"smallest_resize": partial(alb.SmallestMaxSize, p=1.0),
"global_resize": partial(T.SquareResize, p=1.0),
# Keep hue limits small in color jitter because it changes color drastically
# and captions often mention colors. Apply with higher probability.
"color_jitter": partial(
alb.ColorJitter, brightness=0.4, contrast=0.4, saturation=0.4, hue=0.1, p=0.8
),
"horizontal_flip": partial(T.HorizontalFlip, p=0.5),
# Color normalization: whenever selected, always applied. This accepts images
# in [0, 255], requires mean and std in [0, 1] and normalizes to `N(0, 1)`.
"normalize": partial(
alb.Normalize, mean=T.IMAGENET_COLOR_MEAN, std=T.IMAGENET_COLOR_STD, p=1.0
),
}
# fmt: on
@classmethod
def create(cls, name: str, *args, **kwargs) -> Any:
r"""Create an object by its name, args and kwargs."""
if "::" in name:
name, __kwargs = name.split("::")
_kwargs = eval(__kwargs)
else:
_kwargs = {}
_kwargs.update(kwargs)
return super().create(name, *args, **_kwargs)
@classmethod
def from_config(cls, config: Config):
r"""Augmentations cannot be created from config, only :meth:`create`."""
raise NotImplementedError
class PretrainingDatasetFactory(Factory):
r"""
Factory to create :class:`~torch.utils.data.Dataset` s for pretraining
VirTex models. Datasets are created depending on pretraining task used.
Typically these datasets either provide image-caption pairs, or only images
from COCO Captions dataset (serialized to an LMDB file).
As an exception, the dataset for ``multilabel_classification`` provides
COCO images and labels of their bounding box annotations.
Possible choices: ``{"bicaptioning", "captioning", "masked_lm",
"token_classification", "multilabel_classification"}``.
"""
PRODUCTS: Dict[str, Callable] = {
"virtex": vdata.CaptioningDataset,
"bicaptioning": vdata.CaptioningDataset,
"captioning": vdata.CaptioningDataset,
"masked_lm": vdata.MaskedLmDataset,
"token_classification": vdata.TokenClassificationDataset,
"multilabel_classification": vdata.MultiLabelClassificationDataset,
}
@classmethod
def from_config(cls, config: Config, split: str = "train"):
r"""
Create a dataset directly from config. Names in this factory match with
names in :class:`PretrainingModelFactory` because both use same config
parameter ``MODEL.NAME`` to create objects.
Parameters
----------
config: virtex.config.Config
Config object with all the parameters.
split: str, optional (default = "train")
Which split to load for the dataset. One of ``{"train", "val"}``.
"""
_C = config
# Every dataset needs these two args.
kwargs = {"data_root": _C.DATA.ROOT, "split": split}
# Create a list of image transformations based on transform names.
image_transform_list: List[Callable] = []
for name in getattr(_C.DATA, f"IMAGE_TRANSFORM_{split.upper()}"):
# Pass dimensions if cropping / resizing, else rely on the defaults
# as per `ImageTransformsFactory`.
if "resize" in name or "crop" in name:
image_transform_list.append(
ImageTransformsFactory.create(name, _C.DATA.IMAGE_CROP_SIZE)
)
else:
image_transform_list.append(ImageTransformsFactory.create(name))
kwargs["image_transform"] = alb.Compose(image_transform_list)
tokenizer = TokenizerFactory.from_config(_C)
if _C.MODEL.NAME in {"virtex", "bicaptioning", "captioning"}:
kwargs.update(
tokenizer=tokenizer,
max_caption_length=_C.DATA.MAX_CAPTION_LENGTH,
use_single_caption=_C.DATA.USE_SINGLE_CAPTION,
percentage=_C.DATA.USE_PERCENTAGE if split == "train" else 100.0,
)
elif _C.MODEL.NAME == "token_classification":
kwargs.update(
tokenizer=tokenizer, max_caption_length=_C.DATA.MAX_CAPTION_LENGTH
)
elif _C.MODEL.NAME == "masked_lm":
kwargs.update(
tokenizer=tokenizer,
max_caption_length=_C.DATA.MAX_CAPTION_LENGTH,
use_single_caption=_C.DATA.USE_SINGLE_CAPTION,
percentage=_C.DATA.USE_PERCENTAGE if split == "train" else 100.0,
mask_proportion=_C.DATA.MASKED_LM.MASK_PROPORTION,
mask_probability=_C.DATA.MASKED_LM.MASK_PROBABILITY,
replace_probability=_C.DATA.MASKED_LM.REPLACE_PROBABILITY,
)
elif _C.MODEL.NAME in {"virtex_web", "miniclip_web"}:
# Remove "split" argument, not necessary.
_ = kwargs.pop("split")
kwargs.update(
batch_size=_C.OPTIM.BATCH_SIZE // dist.get_world_size(),
tokenizer=tokenizer,
max_caption_length=_C.DATA.MAX_CAPTION_LENGTH,
)
# Dataset names match with model names (and ofcourse pretext names).
return cls.create(_C.MODEL.NAME, **kwargs)
class DownstreamDatasetFactory(Factory):
r"""
Factory to create :class:`~torch.utils.data.Dataset` s for evaluating
VirTex models on downstream tasks.
Possible choices: ``{"datasets/VOC2007", "datasets/imagenet"}``.
"""
PRODUCTS: Dict[str, Callable] = {
"datasets/VOC2007": vdata.VOC07ClassificationDataset,
"datasets/imagenet": vdata.ImageNetDataset,
"datasets/inaturalist": vdata.INaturalist2018Dataset,
}
@classmethod
def from_config(cls, config: Config, split: str = "train"):
r"""
Create a dataset directly from config. Names in this factory are paths
of dataset directories (relative to the project directory), because
config parameter ``DATA.ROOT`` is used to create objects.
Parameters
----------
config: virtex.config.Config
Config object with all the parameters.
split: str, optional (default = "train")
Which split to load for the dataset. One of ``{"trainval", "test"}``
for VOC2007, or one of ``{"train", "val"}`` for ImageNet.
"""
_C = config
# Every dataset needs these two args.
kwargs = {"data_root": _C.DATA.ROOT, "split": split}
# For VOC2007, `IMAGE_TRANSFORM_TRAIN` is used for "trainval" split and
# `IMAGE_TRANSFORM_VAL` is used fo "test" split.
image_transform_names: List[str] = list(
_C.DATA.IMAGE_TRANSFORM_TRAIN
if "train" in split
else _C.DATA.IMAGE_TRANSFORM_VAL
)
# Create a list of image transformations based on names.
image_transform_list: List[Callable] = []
for name in image_transform_names:
# Pass dimensions for resize/crop, else rely on the defaults.
if name.split("::")[0] in {
"random_resized_crop",
"center_crop",
"global_resize",
}:
transform = ImageTransformsFactory.create(name, 224)
elif name.split("::")[0] in {"smallest_resize"}:
transform = ImageTransformsFactory.create(name, 256)
else:
transform = ImageTransformsFactory.create(name)
image_transform_list.append(transform)
kwargs["image_transform"] = alb.Compose(image_transform_list)
return cls.create(_C.DATA.ROOT, **kwargs)
class VisualBackboneFactory(Factory):
r"""
Factory to create :mod:`~virtex.modules.visual_backbones`. This factory
supports any ResNet-like model from
`Torchvision <https://pytorch.org/docs/stable/torchvision/models.html>`_.
Use the method name for model as in torchvision, for example,
``torchvision::resnet50``, ``torchvision::wide_resnet50_2`` etc.
Possible choices: ``{"torchvision", "timm"}``.
"""
PRODUCTS: Dict[str, Callable] = {
"torchvision": visual_backbones.TorchvisionVisualBackbone,
"timm": visual_backbones.TimmVisualBackbone,
}
@classmethod
def from_config(cls, config: Config) -> visual_backbones.VisualBackbone:
r"""
Create a visual backbone directly from config.
Parameters
----------
config: virtex.config.Config
Config object with all the parameters.
"""
_C = config
kwargs = {"visual_feature_size": _C.MODEL.VISUAL.FEATURE_SIZE}
# Check the name for models from torchvision or timm.
package_name, cnn_name = _C.MODEL.VISUAL.NAME.split("::")
kwargs["pretrained"] = _C.MODEL.VISUAL.PRETRAINED
kwargs["frozen"] = _C.MODEL.VISUAL.FROZEN
return cls.create(package_name, cnn_name, **kwargs)
class TextualHeadFactory(Factory):
r"""
Factory to create :mod:`~virtex.modules.textual_heads`. Architectural
hyperparameters for transformers can be specified as ``name::*``.
For example, ``transdec_postnorm::L1_H1024_A16_F4096`` would create a
transformer textual head with ``L = 1`` layers, ``H = 1024`` hidden size,
``A = 16`` attention heads, and ``F = 4096`` size of feedforward layers.
Textual head should be ``"none"`` for pretraining tasks which do not
involve language modeling, such as ``"token_classification"``.
Possible choices: ``{"transdec_postnorm", "transdec_prenorm", "none"}``.
"""
PRODUCTS: Dict[str, Callable] = {
"transdec_prenorm": partial(
textual_heads.TransformerDecoderTextualHead, norm_type="pre"
),
"transdec_postnorm": partial(
textual_heads.TransformerDecoderTextualHead, norm_type="post"
),
"transenc_postnorm": partial(
textual_heads.TransformerEncoderTextualHead, norm_type="post"
),
"transenc_prenorm": partial(
textual_heads.TransformerEncoderTextualHead, norm_type="pre"
),
"none": textual_heads.LinearTextualHead,
}
@classmethod
def from_config(cls, config: Config) -> nn.Module:
r"""
Create a textual head directly from config.
Parameters
----------
config: virtex.config.Config
Config object with all the parameters.
"""
_C = config
name = _C.MODEL.TEXTUAL.NAME
kwargs = {
"visual_feature_size": _C.MODEL.VISUAL.FEATURE_SIZE,
"vocab_size": _C.DATA.VOCAB_SIZE,
}
if "trans" in _C.MODEL.TEXTUAL.NAME:
# Get architectural hyper-params as per name by matching regex.
name, architecture = name.split("::")
architecture = re.match(r"L(\d+)_H(\d+)_A(\d+)_F(\d+)", architecture)
num_layers = int(architecture.group(1))
hidden_size = int(architecture.group(2))
attention_heads = int(architecture.group(3))
feedforward_size = int(architecture.group(4))
# Mask the future tokens for autoregressive captioning.
mask_future = _C.MODEL.NAME in {"virtex", "virtex_web", "captioning", "bicaptioning"}
kwargs.update(
hidden_size=hidden_size,
num_layers=num_layers,
attention_heads=attention_heads,
feedforward_size=feedforward_size,
dropout=_C.MODEL.TEXTUAL.DROPOUT,
mask_future_positions=mask_future,
max_caption_length=_C.DATA.MAX_CAPTION_LENGTH,
padding_idx=_C.DATA.UNK_INDEX,
)
return cls.create(name, **kwargs)
class PretrainingModelFactory(Factory):
r"""
Factory to create :mod:`~virtex.models` for different pretraining tasks.
Possible choices: ``{"bicaptioning", "captioning", "masked_lm",
"token_classification", "multilabel_classification"}``.
"""
PRODUCTS: Dict[str, Callable] = {
# First two are basically the same. Added for shorthand notation.
"virtex": vmodels.VirTexModel,
"bicaptioning": vmodels.BidirectionalCaptioningModel,
"captioning": vmodels.ForwardCaptioningModel,
"masked_lm": vmodels.MaskedLMModel,
"token_classification": vmodels.TokenClassificationModel,
"multilabel_classification": vmodels.MultiLabelClassificationModel,
"virtex_web": vmodels.VirTexModel,
"miniclip_web": vmodels.ImageTextContrastiveModel,
}
@classmethod
def from_config(cls, config: Config) -> nn.Module:
r"""
Create a model directly from config.
Parameters
----------
config: virtex.config.Config
Config object with all the parameters.
"""
_C = config
# Build visual and textual streams based on config.
visual = VisualBackboneFactory.from_config(_C)
textual = TextualHeadFactory.from_config(_C)
# Add model specific kwargs. Refer call signatures of specific models
# for matching kwargs here.
if _C.MODEL.NAME in {"virtex", "captioning", "bicaptioning", "virtex_web"}:
kwargs = {
"sos_index": _C.DATA.SOS_INDEX,
"eos_index": _C.DATA.EOS_INDEX,
"label_smoothing": _C.MODEL.LABEL_SMOOTHING,
"decoder": CaptionDecoderFactory.from_config(_C),
}
elif _C.MODEL.NAME in {"miniclip_web"}:
kwargs = {"label_smoothing": _C.MODEL.LABEL_SMOOTHING}
elif _C.MODEL.NAME == "token_classification":
kwargs = {
"ignore_indices": [
_C.DATA.UNK_INDEX,
_C.DATA.SOS_INDEX,
_C.DATA.EOS_INDEX,
_C.DATA.MASK_INDEX,
]
}
elif _C.MODEL.NAME == "multilabel_classification":
kwargs = {"ignore_indices": [0]} # background index
else:
kwargs = {}
return cls.create(_C.MODEL.NAME, visual, textual, **kwargs)
class CaptionDecoderFactory(Factory):
r"""
Factory to create decoders from predicting captions from VirTex model.
Possible choices: ``{"beam_search", "nucleus_sampling"}``.
"""
PRODUCTS: Dict[str, Callable] = {
"beam_search": AutoRegressiveBeamSearch,
"nucleus_sampling": AutoRegressiveNucleusSampling,
}
@classmethod
def from_config(cls, config: Config) -> nn.Module:
r"""
Create a model directly from config.
Parameters
----------
config: virtex.config.Config
Config object with all the parameters.
"""
_C = config
kwargs = {
"eos_index": _C.DATA.EOS_INDEX,
"max_steps": _C.MODEL.DECODER.MAX_DECODING_STEPS,
}
if _C.MODEL.DECODER.NAME == "beam_search":
kwargs["beam_size"] = _C.MODEL.DECODER.BEAM_SIZE
elif _C.MODEL.DECODER.NAME == "nucleus_sampling":
kwargs["nucleus_size"] = _C.MODEL.DECODER.NUCLEUS_SIZE
return cls.create(_C.MODEL.DECODER.NAME, **kwargs)
class OptimizerFactory(Factory):
r"""Factory to create optimizers. Possible choices: ``{"sgd", "adamw"}``."""
PRODUCTS: Dict[str, Callable] = {"sgd": optim.SGD, "adamw": optim.AdamW}
@classmethod
def from_config(
cls, config: Config, named_parameters: Iterable[Any]
) -> optim.Optimizer:
r"""
Create an optimizer directly from config.
Parameters
----------
config: virtex.config.Config
Config object with all the parameters.
named_parameters: Iterable
Named parameters of model (retrieved by ``model.named_parameters()``)
for the optimizer. We use named parameters to set different LR and
turn off weight decay for certain parameters based on their names.
"""
_C = config
# Set different learning rate for CNN and rest of the model during
# pretraining. This doesn't matter for downstream evaluation because
# there are no modules with "cnn" in their name.
# Also turn off weight decay for layer norm and bias in textual stream.
param_groups = []
for name, param in named_parameters:
wd = 0.0 if re.match(_C.OPTIM.NO_DECAY, name) else _C.OPTIM.WEIGHT_DECAY
lr = _C.OPTIM.CNN_LR if "cnn" in name else _C.OPTIM.LR
param_groups.append({"params": [param], "lr": lr, "weight_decay": wd})
if _C.OPTIM.OPTIMIZER_NAME == "sgd":
kwargs = {"momentum": _C.OPTIM.SGD_MOMENTUM}
else:
kwargs = {}
optimizer = cls.create(_C.OPTIM.OPTIMIZER_NAME, param_groups, **kwargs)
if _C.OPTIM.LOOKAHEAD.USE:
optimizer = Lookahead(
optimizer, k=_C.OPTIM.LOOKAHEAD.STEPS, alpha=_C.OPTIM.LOOKAHEAD.ALPHA
)
return optimizer
class LRSchedulerFactory(Factory):
r"""
Factory to create LR schedulers. All schedulers have a built-in LR warmup
schedule before actual LR scheduling (decay) starts.
Possible choices: ``{"none", "multistep", "linear", "cosine"}``.
"""
PRODUCTS: Dict[str, Callable] = {
"none": lr_scheduler.LinearWarmupNoDecayLR,
"multistep": lr_scheduler.LinearWarmupMultiStepLR,
"linear": lr_scheduler.LinearWarmupLinearDecayLR,
"cosine": lr_scheduler.LinearWarmupCosineAnnealingLR,
}
@classmethod
def from_config(
cls, config: Config, optimizer: optim.Optimizer
) -> optim.lr_scheduler.LambdaLR:
r"""
Create an LR scheduler directly from config.
Parameters
----------
config: virtex.config.Config
Config object with all the parameters.
optimizer: torch.optim.Optimizer
Optimizer on which LR scheduling would be performed.
"""
_C = config
kwargs = {
"total_steps": _C.OPTIM.NUM_ITERATIONS,
"warmup_steps": _C.OPTIM.WARMUP_STEPS,
}
# Multistep LR requires multiplicative factor and milestones.
if _C.OPTIM.LR_DECAY_NAME == "multistep":
kwargs.update(gamma=_C.OPTIM.LR_GAMMA, milestones=_C.OPTIM.LR_STEPS)
return cls.create(_C.OPTIM.LR_DECAY_NAME, optimizer, **kwargs)