Spaces:
Sleeping
Sleeping
File size: 20,134 Bytes
5b2e6a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 |
from typing import Dict, List, Optional
from dataclasses import dataclass
import torch
from torch import nn
from torch.nn import functional as F
from transformers import PreTrainedModel
from transformers.cache_utils import Cache, DynamicCache
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
from transformers.utils import ModelOutput
@dataclass
class CausalBranchyLLMOutputWithPast(ModelOutput):
loss: Optional[torch.Tensor] = None
lm_loss: Optional[torch.Tensor] = None
head_loss: Optional[torch.Tensor] = None
logits: torch.Tensor = None
head_outputs: Optional[torch.Tensor] = None
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
class Branch(nn.Module):
def __init__(self, config):
super().__init__()
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=True)
def forward(self, x):
x = self.layernorm(x)
x = self.lm_head(x)
return x
class BranchyModel(PreTrainedModel):
"""
This class is a wrapper for transformer models with added functionality for branchy networks.
It uses BranchyConfig to initialize a model and later will be extended to add branches.
Args:
branch_locations (List[int]): The locations of the branches in the model.
starts indexing from 0. Branch 0 is after layer 0.
model (PreTrainedModel): The underlying transformer model to wrap.
Returns:
A model instance with the given configuration.
"""
def __init__(self, branch_locations, model, loss_type="kl_div", penality_weight=None):
super().__init__(model.config)
# Initialize the base transformer model
self.model = model
self.branch_locations = branch_locations
self.loss_type = loss_type
self.penality_weight = penality_weight
if self.loss_type == "penalized_cross_entropy":
assert self.penality_weight is not None, "penality_weight must be provided for penalized_cross_entropy loss"
# Get details on layering inside the model
if hasattr(self.model.config, "n_layer") or hasattr(
self.model.config, "num_hidden_layers"
): # If there is no n_layer in the config, there might be ways to get it from the model itself
self.num_layers = (
self.model.config.n_layer
if hasattr(self.model.config, "n_layer")
else self.model.config.num_hidden_layers
)
else:
raise ValueError("cannot find n_layer in config")
# if no branch locations are specified, branch at every layer
if self.branch_locations is None:
self.branch_locations = list(range(self.num_layers - 1))
assert self.num_layers > 0, "The number of layers must be greater than 0"
assert (
len(self.branch_locations) < self.num_layers
), "The number of branches must be less than the number of layers"
assert all(
[0 <= i < self.num_layers for i in self.branch_locations]
), "The branch locations must be between 0 and num_layers"
# Make sure the base model is frozen
for param in self.model.parameters():
param.requires_grad = False
# Instantiate heads. Default: heads are copies of the lm_head
self.model.heads = torch.nn.ModuleList(
[
Branch(self.model.config) for _ in range(len(self.branch_locations))
]
)
# initialize heads
for head in self.model.heads:
head.apply(self.model._init_weights)
# Make them trainable
for param in head.parameters():
param.requires_grad = True
self.post_init()
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.prepare_inputs_for_generation
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
attention_mask=None,
inputs_embeds=None,
**kwargs,
):
if past_key_values is not None:
if isinstance(past_key_values, Cache):
cache_length = past_key_values.get_seq_length()
past_length = past_key_values.seen_tokens
max_cache_length = past_key_values.get_max_length()
else:
cache_length = past_length = past_key_values[0][0].shape[2]
max_cache_length = None
# Keep only the unprocessed tokens:
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
# some of the inputs are exclusivelly passed as part of the cache (e.g. when passing input_embeds as
# input)
if (
attention_mask is not None
and attention_mask.shape[1] > input_ids.shape[1]
):
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
# input_ids based on the past_length.
elif past_length < input_ids.shape[1]:
input_ids = input_ids[:, past_length:]
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
if (
max_cache_length is not None
and attention_mask is not None
and cache_length + input_ids.shape[1] > max_cache_length
):
attention_mask = attention_mask[:, -max_cache_length:]
position_ids = kwargs.get("position_ids", None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -input_ids.shape[1] :]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
model_inputs.update(
{
"position_ids": position_ids,
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"attention_mask": attention_mask,
"fixed_output_head": kwargs.get("fixed_output_head", None),
}
)
return model_inputs
def compute_self_supervision_loss(
self,
aux_logits: torch.Tensor,
lm_logits: torch.Tensor,
return_per_head: bool = False,
) -> Dict[str, torch.Tensor]:
last_aux_logits = aux_logits[..., -1, :]
last_lm_logits = lm_logits[..., -1, :]
repeated_last_lm_logits = last_lm_logits.repeat(
last_aux_logits.shape[0], 1, 1, 1
)
losses = []
# Can be useful to have detailed loss per head for comparison of performance
if return_per_head:
for head_logit in last_aux_logits:
if self.loss_type == "kl_div":
losses.append(
nn.KLDivLoss(reduction="batchmean")(
F.log_softmax(head_logit, dim=-1),
F.softmax(last_lm_logits, dim=-1),
)
)
elif self.loss_type == "cross_entropy":
losses.append(
nn.CrossEntropyLoss(reduction="mean")(
head_logit, torch.argmax(last_lm_logits, dim=-1)
)
)
elif self.loss_type == "penalized_cross_entropy":
ce_loss = nn.CrossEntropyLoss(reduction="mean")(
head_logit, torch.argmax(last_lm_logits, dim=-1)
)
probas = F.softmax(head_logit, dim=-1)
entropy = torch.mean(-torch.sum(probas * torch.log(probas + 1e-8), dim=-1))
#losses.append(ce_loss - self.penality_weight * (1.0 / (1.0 + entropy)))
losses.append(ce_loss - self.penality_weight * entropy)
else:
raise ValueError(
"The loss type must be either kl_div or cross_entropy"
)
loss = torch.stack(losses, dim=0).mean(dim=-1)
else:
# Compute the KL divergence between the last auxiliary head and the last LM head
if self.loss_type == "kl_div":
loss = nn.KLDivLoss(reduction="batchmean")(
F.log_softmax(last_aux_logits.view(-1, self.config.vocab_size), dim=-1),
F.softmax(
repeated_last_lm_logits.view(-1, self.config.vocab_size), dim=-1
),
)
elif self.loss_type == "cross_entropy":
loss = nn.CrossEntropyLoss(reduction="mean")(
last_aux_logits.view(-1, self.config.vocab_size),
torch.argmax(
repeated_last_lm_logits.view(-1, self.config.vocab_size), dim=-1
),
)
elif self.loss_type == "penalized_cross_entropy":
ce_loss = nn.CrossEntropyLoss(reduction="mean")(
last_aux_logits.view(-1, self.config.vocab_size),
torch.argmax(
repeated_last_lm_logits.view(-1, self.config.vocab_size), dim=-1
),
)
probas = F.softmax(
last_aux_logits.view(-1, self.config.vocab_size), dim=-1
)
entropy = torch.mean(-torch.sum(probas * torch.log(probas + 1e-8), dim=-1))
loss = ce_loss + self.penality_weight * entropy
else:
raise ValueError(
"The loss type must be either kl_div or cross_entropy"
)
if return_per_head:
return {"loss": loss, "aux_loss": torch.stack(losses)}
else:
return {"loss": loss, "aux_loss": None}
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
self_supervision: Optional[bool] = None,
fixed_output_head: Optional[int] = None,
):
output_attentions = (
output_attentions
if output_attentions is not None
else self.config.output_attentions
)
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
if self_supervision:
output_hidden_states = True
return self.forward_for_training(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
labels=labels,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
else:
return self.forward_for_inference(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
return_dict=return_dict,
fixed_output_head=fixed_output_head,
)
def forward_for_inference(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
return_dict: Optional[bool] = None,
fixed_output_head: Optional[int] = None,
):
if fixed_output_head not in self.branch_locations and fixed_output_head is not None and fixed_output_head != -1:
raise ValueError(
"The fixed output head must be one of the branch locations"
)
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
elif input_ids is not None:
batch_size, seq_length = input_ids.shape
elif inputs_embeds is not None:
batch_size, seq_length, _ = inputs_embeds.shape
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
past_key_values_length = 0
if use_cache:
use_legacy_cache = not isinstance(past_key_values, Cache)
if use_legacy_cache:
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
past_key_values_length = past_key_values.get_usable_length(seq_length)
if position_ids is None:
device = input_ids.device if input_ids is not None else inputs_embeds.device
position_ids = torch.arange(
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
)
position_ids = position_ids.unsqueeze(0)
if inputs_embeds is None:
inputs_embeds = self.model.model.embed_tokens(input_ids)
inputs_embeds = self.model.model.embed_dropout(inputs_embeds)
# Attention mask.
if self.model.model._use_flash_attention_2:
# 2d mask is passed through the layers
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
else:
# 4d mask is passed through the layers
attention_mask = _prepare_4d_causal_attention_mask(
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
)
all_head_logits = []
hidden_states = inputs_embeds
is_early_exited = False
for layer_idx, decoder_layer in enumerate(self.model.model.layers):
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_values,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache = layer_outputs[1]
if fixed_output_head is not None and layer_idx == fixed_output_head:
# find postion of layer idx in branch_locations
branch_idx = self.branch_locations.index(layer_idx)
logits = self.model.heads[branch_idx](hidden_states)
is_early_exited = True
break
elif fixed_output_head == -1 and layer_idx in self.branch_locations:
# -1 means output all heads
branch_idx = self.branch_locations.index(layer_idx)
logits = self.model.heads[branch_idx](hidden_states)
all_head_logits.append(logits)
if not is_early_exited:
hidden_states = self.model.model.final_layernorm(hidden_states)
logits = self.model.lm_head(hidden_states)
if fixed_output_head == -1:
all_head_logits.append(logits)
all_head_logits = torch.stack(all_head_logits, dim=0)
next_cache = None
if use_cache:
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
if not return_dict:
return tuple(v for v in [logits, next_cache] if v is not None)
return CausalBranchyLLMOutputWithPast(
logits=logits,
head_outputs=all_head_logits,
past_key_values=next_cache,
)
def forward_for_training(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
if not output_hidden_states:
raise ValueError("output_hidden_states must be True for BranchyLLM")
if labels is not None:
raise NotImplementedError("BranchyLLM only supports self-supervision")
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if not hasattr(outputs, "hidden_states") or outputs.hidden_states is None:
raise ValueError("The model must return hidden states")
hidden_states = outputs.hidden_states
heads_logits = []
for i, branch in enumerate(self.branch_locations):
heads_logits.append(
self.model.heads[i](
hidden_states[branch]
)
)
lm_logits = self.model.lm_head(hidden_states[-1])
heads_logits = torch.stack(heads_logits, dim=0).float()
lm_logits = lm_logits.float()
logits = torch.cat([heads_logits, lm_logits.unsqueeze(0)], dim=0)
loss = None
lm_loss = None
aux_loss = None
losses = self.compute_self_supervision_loss(
heads_logits, lm_logits, return_per_head=True
)
loss = losses["loss"]
if losses["aux_loss"] is not None:
aux_loss = losses["aux_loss"]
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss, aux_loss, lm_loss) + output) if loss is not None else output
return CausalBranchyLLMOutputWithPast(
loss=loss,
lm_loss=lm_loss,
head_loss=aux_loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
) |