File size: 20,134 Bytes
5b2e6a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
from typing import Dict, List, Optional
from dataclasses import dataclass

import torch
from torch import nn
from torch.nn import functional as F
from transformers import PreTrainedModel
from transformers.cache_utils import Cache, DynamicCache
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
from transformers.utils import ModelOutput


@dataclass
class CausalBranchyLLMOutputWithPast(ModelOutput):
    loss: Optional[torch.Tensor] = None
    lm_loss: Optional[torch.Tensor] = None
    head_loss: Optional[torch.Tensor] = None
    logits: torch.Tensor = None
    head_outputs: Optional[torch.Tensor] = None
    past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
    hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    attentions: Optional[Tuple[torch.FloatTensor]] = None

class Branch(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=True)
    
    def forward(self, x):
        x = self.layernorm(x)
        x = self.lm_head(x)
        return x

class BranchyModel(PreTrainedModel):
    """
    This class is a wrapper for transformer models with added functionality for branchy networks.
    It uses BranchyConfig to initialize a model and later will be extended to add branches.

    Args:
        branch_locations (List[int]): The locations of the branches in the model.
        starts indexing from 0. Branch 0 is after layer 0.
        model (PreTrainedModel): The underlying transformer model to wrap.

    Returns:
        A model instance with the given configuration.
    """

    def __init__(self, branch_locations, model, loss_type="kl_div", penality_weight=None):
        super().__init__(model.config)
        # Initialize the base transformer model
        self.model = model
        self.branch_locations = branch_locations
        self.loss_type = loss_type
        self.penality_weight = penality_weight
        if self.loss_type == "penalized_cross_entropy":
            assert self.penality_weight is not None, "penality_weight must be provided for penalized_cross_entropy loss"
        # Get details on layering inside the model
        if hasattr(self.model.config, "n_layer") or hasattr(
            self.model.config, "num_hidden_layers"
        ):  # If there is no n_layer in the config, there might be ways to get it from the model itself
            self.num_layers = (
                self.model.config.n_layer
                if hasattr(self.model.config, "n_layer")
                else self.model.config.num_hidden_layers
            )
        else:
            raise ValueError("cannot find n_layer in config")
        # if no branch locations are specified, branch at every layer
        if self.branch_locations is None:
            self.branch_locations = list(range(self.num_layers - 1))
            
        assert self.num_layers > 0, "The number of layers must be greater than 0"
        assert (
            len(self.branch_locations) < self.num_layers
        ), "The number of branches must be less than the number of layers"
        assert all(
            [0 <= i < self.num_layers for i in self.branch_locations]
        ), "The branch locations must be between 0 and num_layers"


        # Make sure the base model is frozen
        for param in self.model.parameters():
            param.requires_grad = False

        # Instantiate heads. Default: heads are copies of the lm_head
        self.model.heads = torch.nn.ModuleList(
            [
                Branch(self.model.config) for _ in range(len(self.branch_locations))
            ]
        )

        # initialize heads
        for head in self.model.heads:
            head.apply(self.model._init_weights)
            # Make them trainable
            for param in head.parameters():
                param.requires_grad = True

        self.post_init()

    # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.prepare_inputs_for_generation
    def prepare_inputs_for_generation(
        self,
        input_ids,
        past_key_values=None,
        attention_mask=None,
        inputs_embeds=None,
        **kwargs,
    ):
        if past_key_values is not None:
            if isinstance(past_key_values, Cache):
                cache_length = past_key_values.get_seq_length()
                past_length = past_key_values.seen_tokens
                max_cache_length = past_key_values.get_max_length()
            else:
                cache_length = past_length = past_key_values[0][0].shape[2]
                max_cache_length = None

            # Keep only the unprocessed tokens:
            # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
            # some of the inputs are exclusivelly passed as part of the cache (e.g. when passing input_embeds as
            # input)
            if (
                attention_mask is not None
                and attention_mask.shape[1] > input_ids.shape[1]
            ):
                input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
            # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
            # input_ids based on the past_length.
            elif past_length < input_ids.shape[1]:
                input_ids = input_ids[:, past_length:]
            # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.

            # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
            if (
                max_cache_length is not None
                and attention_mask is not None
                and cache_length + input_ids.shape[1] > max_cache_length
            ):
                attention_mask = attention_mask[:, -max_cache_length:]

        position_ids = kwargs.get("position_ids", None)
        if attention_mask is not None and position_ids is None:
            # create position_ids on the fly for batch generation
            position_ids = attention_mask.long().cumsum(-1) - 1
            position_ids.masked_fill_(attention_mask == 0, 1)
            if past_key_values:
                position_ids = position_ids[:, -input_ids.shape[1] :]

        # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
        if inputs_embeds is not None and past_key_values is None:
            model_inputs = {"inputs_embeds": inputs_embeds}
        else:
            model_inputs = {"input_ids": input_ids}

        model_inputs.update(
            {
                "position_ids": position_ids,
                "past_key_values": past_key_values,
                "use_cache": kwargs.get("use_cache"),
                "attention_mask": attention_mask,
                "fixed_output_head": kwargs.get("fixed_output_head", None),
            }
        )
        return model_inputs

    def compute_self_supervision_loss(
        self,
        aux_logits: torch.Tensor,
        lm_logits: torch.Tensor,
        return_per_head: bool = False,
    ) -> Dict[str, torch.Tensor]:
        last_aux_logits = aux_logits[..., -1, :]
        last_lm_logits = lm_logits[..., -1, :]

        repeated_last_lm_logits = last_lm_logits.repeat(
            last_aux_logits.shape[0], 1, 1, 1
        )
        losses = []
        # Can be useful to have detailed loss per head for comparison of performance
        if return_per_head:
            for head_logit in last_aux_logits:
                if self.loss_type == "kl_div":
                    losses.append(
                        nn.KLDivLoss(reduction="batchmean")(
                            F.log_softmax(head_logit, dim=-1),
                            F.softmax(last_lm_logits, dim=-1),
                        )
                    )
                elif self.loss_type == "cross_entropy":
                    losses.append(
                        nn.CrossEntropyLoss(reduction="mean")(
                            head_logit, torch.argmax(last_lm_logits, dim=-1)
                        )
                    )
                elif self.loss_type == "penalized_cross_entropy":
                    ce_loss = nn.CrossEntropyLoss(reduction="mean")(
                        head_logit, torch.argmax(last_lm_logits, dim=-1)
                    )
                    probas = F.softmax(head_logit, dim=-1)
                    entropy = torch.mean(-torch.sum(probas * torch.log(probas + 1e-8), dim=-1))
                    #losses.append(ce_loss - self.penality_weight * (1.0 / (1.0 + entropy)))
                    losses.append(ce_loss - self.penality_weight * entropy)
                else:
                    raise ValueError(
                        "The loss type must be either kl_div or cross_entropy"
                    )
            loss = torch.stack(losses, dim=0).mean(dim=-1)
        else:
            # Compute the KL divergence between the last auxiliary head and the last LM head
            if self.loss_type == "kl_div":
                loss = nn.KLDivLoss(reduction="batchmean")(
                    F.log_softmax(last_aux_logits.view(-1, self.config.vocab_size), dim=-1),
                    F.softmax(
                        repeated_last_lm_logits.view(-1, self.config.vocab_size), dim=-1
                    ),
                )
            elif self.loss_type == "cross_entropy":
                loss = nn.CrossEntropyLoss(reduction="mean")(
                    last_aux_logits.view(-1, self.config.vocab_size),
                    torch.argmax(
                        repeated_last_lm_logits.view(-1, self.config.vocab_size), dim=-1
                    ),
                )
            elif self.loss_type == "penalized_cross_entropy":
                ce_loss = nn.CrossEntropyLoss(reduction="mean")(
                    last_aux_logits.view(-1, self.config.vocab_size), 
                    torch.argmax(
                        repeated_last_lm_logits.view(-1, self.config.vocab_size), dim=-1
                    ),
                )
                probas = F.softmax(
                    last_aux_logits.view(-1, self.config.vocab_size), dim=-1
                )
                entropy = torch.mean(-torch.sum(probas * torch.log(probas + 1e-8), dim=-1))
                loss = ce_loss + self.penality_weight * entropy
            else:
                raise ValueError(
                    "The loss type must be either kl_div or cross_entropy"
                )
        if return_per_head:
            return {"loss": loss, "aux_loss": torch.stack(losses)}
        else:
            return {"loss": loss, "aux_loss": None}

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        self_supervision: Optional[bool] = None,
        fixed_output_head: Optional[int] = None,
    ):
        output_attentions = (
            output_attentions
            if output_attentions is not None
            else self.config.output_attentions
        )
        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache

        if self_supervision:
            output_hidden_states = True
            return self.forward_for_training(
                input_ids=input_ids,
                attention_mask=attention_mask,
                position_ids=position_ids,
                past_key_values=past_key_values,
                inputs_embeds=inputs_embeds,
                labels=labels,
                use_cache=use_cache,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict,
            )
        else:
            return self.forward_for_inference(
                input_ids=input_ids,
                attention_mask=attention_mask,
                position_ids=position_ids,
                past_key_values=past_key_values,
                inputs_embeds=inputs_embeds,
                use_cache=use_cache,
                return_dict=return_dict,
                fixed_output_head=fixed_output_head,
            )

    def forward_for_inference(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        fixed_output_head: Optional[int] = None,
    ):
        if fixed_output_head not in self.branch_locations and fixed_output_head is not None and fixed_output_head != -1:
            raise ValueError(
                "The fixed output head must be one of the branch locations"
            )
        # retrieve input_ids and inputs_embeds
        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
        elif input_ids is not None:
            batch_size, seq_length = input_ids.shape
        elif inputs_embeds is not None:
            batch_size, seq_length, _ = inputs_embeds.shape
        else:
            raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
        
        past_key_values_length = 0
        
        if use_cache:
            use_legacy_cache = not isinstance(past_key_values, Cache)
            if use_legacy_cache:
                past_key_values = DynamicCache.from_legacy_cache(past_key_values)
            past_key_values_length = past_key_values.get_usable_length(seq_length)
        
        if position_ids is None:
            device = input_ids.device if input_ids is not None else inputs_embeds.device
            position_ids = torch.arange(
                past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
            )
            position_ids = position_ids.unsqueeze(0)

        if inputs_embeds is None:
            inputs_embeds = self.model.model.embed_tokens(input_ids)

        inputs_embeds = self.model.model.embed_dropout(inputs_embeds)
        
        # Attention mask.
        if self.model.model._use_flash_attention_2:
            # 2d mask is passed through the layers
            attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
        else:
            # 4d mask is passed through the layers
            attention_mask = _prepare_4d_causal_attention_mask(
                attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
            )
        all_head_logits = []
        hidden_states = inputs_embeds
        is_early_exited = False
        for layer_idx, decoder_layer in enumerate(self.model.model.layers):
            layer_outputs = decoder_layer(
                    hidden_states,
                    attention_mask=attention_mask,
                    position_ids=position_ids,
                    past_key_value=past_key_values,
                    use_cache=use_cache,
                )
            
            hidden_states = layer_outputs[0]

            if use_cache:
                next_decoder_cache = layer_outputs[1]
                
            if fixed_output_head is not None and layer_idx == fixed_output_head:
                # find postion of layer idx in branch_locations
                branch_idx = self.branch_locations.index(layer_idx)
                logits = self.model.heads[branch_idx](hidden_states)
                is_early_exited = True
                break
            elif fixed_output_head == -1 and layer_idx in self.branch_locations:
                # -1 means output all heads
                branch_idx = self.branch_locations.index(layer_idx)
                logits = self.model.heads[branch_idx](hidden_states)
                all_head_logits.append(logits)
            
        if not is_early_exited:
            hidden_states = self.model.model.final_layernorm(hidden_states)
            logits = self.model.lm_head(hidden_states)
            if fixed_output_head == -1:
                all_head_logits.append(logits)
                all_head_logits = torch.stack(all_head_logits, dim=0)
        next_cache = None
        if use_cache:
            next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
        if not return_dict:
            return tuple(v for v in [logits, next_cache] if v is not None)
        
        return CausalBranchyLLMOutputWithPast(
            logits=logits,
            head_outputs=all_head_logits,
            past_key_values=next_cache,
        )
        
    def forward_for_training(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ):

        if not output_hidden_states:
            raise ValueError("output_hidden_states must be True for BranchyLLM")
        if labels is not None:
            raise NotImplementedError("BranchyLLM only supports self-supervision")
        outputs = self.model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        if not hasattr(outputs, "hidden_states") or outputs.hidden_states is None:
            raise ValueError("The model must return hidden states")
        hidden_states = outputs.hidden_states


        heads_logits = []
        for i, branch in enumerate(self.branch_locations):
            heads_logits.append(
                self.model.heads[i](
                    hidden_states[branch]
                )
            )
        lm_logits = self.model.lm_head(hidden_states[-1])

        heads_logits = torch.stack(heads_logits, dim=0).float()
        lm_logits = lm_logits.float()
        logits = torch.cat([heads_logits, lm_logits.unsqueeze(0)], dim=0)

        loss = None
        lm_loss = None
        aux_loss = None

        losses = self.compute_self_supervision_loss(
            heads_logits, lm_logits, return_per_head=True
        )
        loss = losses["loss"]
        if losses["aux_loss"] is not None:
            aux_loss = losses["aux_loss"]

        if not return_dict:
            output = (logits,) + outputs[1:]
            return ((loss, aux_loss, lm_loss) + output) if loss is not None else output

        return CausalBranchyLLMOutputWithPast(
            loss=loss,
            lm_loss=lm_loss,
            head_loss=aux_loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )