File size: 13,275 Bytes
c892f97 dd5a703 c892f97 1b657c1 c892f97 1b657c1 c892f97 1b657c1 c892f97 1b657c1 c892f97 dd5a703 1b657c1 dd5a703 c892f97 dd5a703 c892f97 dd5a703 c892f97 1b657c1 c892f97 1b657c1 c892f97 dd5a703 1b657c1 dd5a703 c892f97 1b657c1 c892f97 1b657c1 c892f97 1b657c1 c892f97 1b657c1 c892f97 1b657c1 c892f97 1b657c1 c892f97 1b657c1 c892f97 1b657c1 c892f97 1b657c1 c892f97 1b657c1 c892f97 1b657c1 c892f97 dd5a703 c892f97 dd5a703 c892f97 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 |
import subprocess
import logging
from datetime import datetime
import gradio as gr
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from apscheduler.triggers.cron import CronTrigger
from pytz import utc
from tabs.trades import (
prepare_trades,
get_overall_trades,
get_overall_winning_trades,
plot_trades_by_week,
plot_winning_trades_by_week,
plot_trade_details
)
from tabs.tool_win import (
get_tool_winning_rate,
get_overall_winning_rate,
plot_tool_winnings_overall,
plot_tool_winnings_by_tool
)
from tabs.error import (
get_error_data,
get_error_data_overall,
plot_error_data,
plot_tool_error_data,
plot_week_error_data
)
from tabs.about import about_olas_predict
def update_trades_plots():
global tools_df, trades_df, error_df, error_overall_df, winning_rate_df, winning_rate_overall_df, trades_count_df, trades_winning_rate_df
refresh_data()
updated_trades_by_week_plot = plot_trades_by_week(
trades_df=trades_count_df
)
updated_winning_trades_by_week_plot = plot_winning_trades_by_week(
trades_df=trades_winning_rate_df
)
updated_trade_details_plot = plot_trade_details(
trade_detail="mech calls",
trades_df=trades_df
)
return (
updated_trades_by_week_plot,
updated_winning_trades_by_week_plot,
updated_trade_details_plot
)
def update_tool_winnings_plots():
global tools_df, trades_df, error_df, error_overall_df, winning_rate_df, winning_rate_overall_df, trades_count_df, trades_winning_rate_df
refresh_data()
updated_winning_plot = plot_tool_winnings_overall(
wins_df=winning_rate_overall_df,
winning_selector="win_perc"
)
updated_tool_winnings_by_tool_plot = plot_tool_winnings_by_tool(
wins_df=winning_rate_df,
tool=INC_TOOLS[0]
)
return (
updated_winning_plot,
updated_tool_winnings_by_tool_plot
)
def update_error_plots():
global tools_df, trades_df, error_df, error_overall_df, winning_rate_df, winning_rate_overall_df, trades_count_df, trades_winning_rate_df
refresh_data()
updated_error_overall_plot = plot_error_data(
error_all_df=error_overall_df
)
updated_tool_error_plot = plot_tool_error_data(
error_df=error_df,
tool=INC_TOOLS[0]
)
updated_week_error_plot = plot_week_error_data(
error_df=error_df,
week=choices[-1]
)
return (
updated_error_overall_plot,
updated_tool_error_plot,
updated_week_error_plot
)
def refresh_data():
try:
global tools_df, trades_df, error_df, error_overall_df, winning_rate_df, winning_rate_overall_df, trades_count_df, trades_winning_rate_df
logging.info("Refreshing data...")
tools_df = pd.read_csv("./data/tools.csv", low_memory=False)
trades_df = pd.read_csv("./data/all_trades_profitability.csv")
trades_df = prepare_trades(trades_df)
error_df = get_error_data(tools_df=tools_df, inc_tools=INC_TOOLS)
error_overall_df = get_error_data_overall(error_df=error_df)
winning_rate_df = get_tool_winning_rate(tools_df=tools_df, inc_tools=INC_TOOLS)
winning_rate_overall_df = get_overall_winning_rate(wins_df=winning_rate_df)
trades_count_df = get_overall_trades(trades_df=trades_df)
trades_winning_rate_df = get_overall_winning_trades(trades_df=trades_df)
logging.info("Data refreshed.")
except Exception as e:
logging.error("Failed to refresh data: %s", e)
def pull_refresh_data():
# Run the pull_data.py script and wait for it to finish
try:
result = subprocess.run(["python", "./scripts/pull_data.py"], check=True)
logging.info("Script executed successfully: %s", result)
refresh_data()
except subprocess.CalledProcessError as e:
logging.error("Failed to run script: %s", e)
return # Stop execution if the script fails
refresh_data()
tools_df = pd.read_csv("./data/tools.csv", low_memory=False)
trades_df = pd.read_csv("./data/all_trades_profitability.csv")
trades_df = prepare_trades(trades_df)
demo = gr.Blocks()
INC_TOOLS = [
'prediction-online',
'prediction-offline',
'claude-prediction-online',
'claude-prediction-offline',
'prediction-offline-sme',
'prediction-online-sme',
'prediction-request-rag',
'prediction-request-reasoning',
'prediction-url-cot-claude',
'prediction-request-rag-claude',
'prediction-request-reasoning-claude'
]
error_df = get_error_data(
tools_df=tools_df,
inc_tools=INC_TOOLS
)
error_overall_df = get_error_data_overall(
error_df=error_df
)
winning_rate_df = get_tool_winning_rate(
tools_df=tools_df,
inc_tools=INC_TOOLS
)
winning_rate_overall_df = get_overall_winning_rate(
wins_df=winning_rate_df
)
trades_count_df = get_overall_trades(
trades_df=trades_df
)
trades_winning_rate_df = get_overall_winning_trades(
trades_df=trades_df
)
with demo:
gr.HTML("<h1>Olas Predict Actual Performance</h1>")
gr.Markdown("This app shows the actual performance of Olas Predict tools on the live market.")
with gr.Tabs():
with gr.TabItem("🔥Trades Dashboard"):
with gr.Row():
gr.Markdown("# Plot of number of trades by week")
with gr.Row():
trades_by_week_plot = plot_trades_by_week(
trades_df=trades_count_df
)
with gr.Row():
gr.Markdown("# Plot of winning trades by week")
with gr.Row():
winning_trades_by_week_plot = plot_winning_trades_by_week(
trades_df=trades_winning_rate_df
)
with gr.Row():
gr.Markdown("# Plot of trade details")
with gr.Row():
trade_details_selector = gr.Dropdown(
label="Select a trade",
choices=[
"mech calls",
"collateral amount",
"earnings",
"net earnings",
"ROI"
],
value="mech calls"
)
with gr.Row():
trade_details_plot = plot_trade_details(
trade_detail="mech calls",
trades_df=trades_df
)
def update_trade_details(trade_detail):
return plot_trade_details(
trade_detail=trade_detail,
trades_df=trades_df
)
trade_details_selector.change(
update_trade_details,
inputs=trade_details_selector,
outputs=trade_details_plot
)
with gr.Row():
trade_details_selector
with gr.Row():
trade_details_plot
with gr.Row():
with gr.Column():
refresh_button = gr.Button("Refresh Data")
refresh_button.click(
update_trades_plots,
outputs=[
trades_by_week_plot,
winning_trades_by_week_plot,
trade_details_plot,
]
)
with gr.TabItem("🚀 Tool Winning Dashboard"):
with gr.Row():
gr.Markdown("# Plot showing overall winning rate")
with gr.Row():
winning_selector = gr.Dropdown(
label="Select Metric",
choices=['losses', 'wins', 'total_request', 'win_perc'],
value='win_perc',
)
with gr.Row():
winning_plot = plot_tool_winnings_overall(
wins_df=winning_rate_overall_df,
winning_selector="win_perc"
)
def update_tool_winnings_overall_plot(winning_selector):
return plot_tool_winnings_overall(
wins_df=winning_rate_overall_df,
winning_selector=winning_selector
)
winning_selector.change(
update_tool_winnings_overall_plot,
inputs=winning_selector,
outputs=winning_plot
)
with gr.Row():
winning_selector
with gr.Row():
winning_plot
with gr.Row():
gr.Markdown("# Plot showing winning rate by tool")
with gr.Row():
sel_tool = gr.Dropdown(
label="Select a tool",
choices=INC_TOOLS,
value=INC_TOOLS[0]
)
with gr.Row():
tool_winnings_by_tool_plot = plot_tool_winnings_by_tool(
wins_df=winning_rate_df,
tool=INC_TOOLS[0]
)
def update_tool_winnings_by_tool_plot(tool):
return plot_tool_winnings_by_tool(
wins_df=winning_rate_df,
tool=tool
)
sel_tool.change(
update_tool_winnings_by_tool_plot,
inputs=sel_tool,
outputs=tool_winnings_by_tool_plot
)
with gr.Row():
sel_tool
with gr.Row():
tool_winnings_by_tool_plot
with gr.Row():
refresh_button = gr.Button("Refresh Data")
refresh_button.click(
update_tool_winnings_plots,
outputs=[
winning_plot,
tool_winnings_by_tool_plot
]
)
with gr.TabItem("🏥 Tool Error Dashboard"):
with gr.Row():
gr.Markdown("# Plot showing overall error")
with gr.Row():
error_overall_plot = plot_error_data(
error_all_df=error_overall_df
)
with gr.Row():
gr.Markdown("# Plot showing error by tool")
with gr.Row():
sel_tool = gr.Dropdown(
label="Select a tool",
choices=INC_TOOLS,
value=INC_TOOLS[0]
)
with gr.Row():
tool_error_plot = plot_tool_error_data(
error_df=error_df,
tool=INC_TOOLS[0]
)
def update_tool_error_plot(tool):
return plot_tool_error_data(
error_df=error_df,
tool=tool
)
sel_tool.change(
update_tool_error_plot,
inputs=sel_tool,
outputs=tool_error_plot
)
with gr.Row():
sel_tool
with gr.Row():
tool_error_plot
with gr.Row():
gr.Markdown("# Plot showing error by week")
with gr.Row():
choices = error_overall_df['request_month_year_week'].unique().tolist()
# sort the choices by the latest week to be on the top
choices = sorted(choices)
sel_week = gr.Dropdown(
label="Select a week",
choices=choices,
value=choices[-1]
)
with gr.Row():
week_error_plot = plot_week_error_data(
error_df=error_df,
week=choices[-1]
)
def update_week_error_plot(selected_week):
return plot_week_error_data(
error_df=error_df,
week=selected_week
)
sel_tool.change(update_tool_error_plot, inputs=sel_tool, outputs=tool_error_plot)
sel_week.change(update_week_error_plot, inputs=sel_week, outputs=week_error_plot)
with gr.Row():
sel_tool
with gr.Row():
tool_error_plot
with gr.Row():
sel_week
with gr.Row():
week_error_plot
with gr.Row():
refresh_button = gr.Button("Refresh Data")
refresh_button.click(
update_error_plots,
outputs=[
error_overall_plot,
tool_error_plot,
week_error_plot
]
)
with gr.TabItem("ℹ️ About"):
with gr.Accordion("About Olas Predict"):
gr.Markdown(about_olas_predict)
# Create the scheduler
scheduler = BackgroundScheduler(timezone=utc)
scheduler.add_job(pull_refresh_data, CronTrigger(hour=0, minute=0)) # Runs daily at 12 AM UTC
scheduler.start()
demo.queue(default_concurrency_limit=40).launch()
|