File size: 7,858 Bytes
c892f97
 
adb9884
c892f97
 
773af00
78ecbf5
e090d54
c892f97
 
 
e090d54
 
 
 
2f8587a
e090d54
 
 
 
141889f
e090d54
 
c892f97
 
 
 
141889f
e090d54
 
 
 
 
 
 
141889f
e090d54
2f8587a
 
 
e090d54
c892f97
e090d54
c892f97
 
e090d54
c892f97
 
e090d54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f8587a
 
 
 
e090d54
 
 
 
c892f97
 
 
2f8587a
c892f97
 
e090d54
c892f97
 
 
 
 
 
 
 
 
 
 
e090d54
 
 
 
141889f
 
 
e090d54
 
141889f
 
 
 
 
 
 
 
 
 
 
e090d54
adb9884
141889f
adb9884
 
141889f
 
 
 
 
 
adb9884
141889f
adb9884
 
 
 
 
773af00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c892f97
 
 
 
 
 
 
 
 
 
 
e090d54
 
 
 
141889f
 
 
e090d54
141889f
 
 
 
 
 
 
 
 
 
 
adb9884
 
141889f
adb9884
 
141889f
 
 
 
 
 
adb9884
141889f
adb9884
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import gradio as gr
import pandas as pd
import plotly.express as px


HEIGHT = 400
WIDTH = 1100


def prepare_trades(trades_df: pd.DataFrame) -> pd.DataFrame:
    """Prepares the trades data for analysis."""
    trades_df["creation_timestamp"] = pd.to_datetime(trades_df["creation_timestamp"])
    trades_df["creation_timestamp"] = trades_df["creation_timestamp"].dt.tz_convert(
        "UTC"
    )
    trades_df = trades_df.sort_values(by="creation_timestamp", ascending=True)
    trades_df["month_year"] = (
        trades_df["creation_timestamp"].dt.to_period("M").astype(str)
    )
    trades_df["month_year_week"] = (
        trades_df["creation_timestamp"].dt.to_period("W").dt.strftime("%b-%d")
    )
    trades_df["winning_trade"] = trades_df["winning_trade"].astype(int)
    return trades_df


def get_overall_trades(trades_df: pd.DataFrame) -> pd.DataFrame:
    """Gets the overall trades data"""
    trades_count = trades_df.groupby("month_year_week").size().reset_index()
    trades_count.columns = trades_count.columns.astype(str)
    trades_count.rename(columns={"0": "trades"}, inplace=True)
    return trades_count


def get_overall_by_market_trades(trades_df: pd.DataFrame) -> pd.DataFrame:
    """Gets the overall trades data"""
    trades_count = (
        trades_df.groupby(["month_year_week", "market_creator"], sort=False)
        .size()
        .reset_index()
    )
    trades_count.columns = trades_count.columns.astype(str)
    trades_count.rename(columns={"0": "trades"}, inplace=True)
    return trades_count


def get_overall_winning_trades(trades_df: pd.DataFrame) -> pd.DataFrame:
    """Gets the overall winning trades data for the given tools and calculates the winning percentage."""
    winning_trades = (
        trades_df.groupby(["month_year_week"])["winning_trade"].sum()
        / trades_df.groupby(["month_year_week"])["winning_trade"].count()
        * 100
    )
    # winning_trades is a series, give it a dataframe
    winning_trades = winning_trades.reset_index()
    winning_trades.columns = winning_trades.columns.astype(str)
    winning_trades.columns = ["month_year_week", "winning_trade"]
    return winning_trades


def get_overall_winning_by_market_trades(trades_df: pd.DataFrame) -> pd.DataFrame:
    """Gets the overall winning trades data for the given tools and calculates the winning percentage."""
    winning_trades = (
        trades_df.groupby(["month_year_week", "market_creator"], sort=False)[
            "winning_trade"
        ].sum()
        / trades_df.groupby(["month_year_week", "market_creator"], sort=False)[
            "winning_trade"
        ].count()
        * 100
    )
    # winning_trades is a series, give it a dataframe
    winning_trades = winning_trades.reset_index()
    winning_trades.columns = winning_trades.columns.astype(str)
    winning_trades.columns = ["month_year_week", "market_creator", "winning_trade"]
    return winning_trades


def plot_trades_by_week(trades_df: pd.DataFrame) -> gr.BarPlot:
    """Plots the trades data for the given tools and calculates the winning percentage."""
    return gr.BarPlot(
        value=trades_df,
        x="month_year_week",
        y="trades",
        show_label=True,
        interactive=True,
        show_actions_button=True,
        tooltip=["month_year_week", "trades"],
        height=HEIGHT,
        width=WIDTH,
    )


def plot_trades_per_market_by_week(
    trades_df: pd.DataFrame, market_type: str
) -> gr.Plot:
    """Plots the trades data for the given tools and calculates the winning percentage."""
    assert "market_creator" in trades_df.columns
    # if market_type is "all then no filter is applied"
    if market_type == "quickstart":
        trades = trades_df.loc[trades_df["market_creator"] == "quickstart"]
        color_sequence = ["goldenrod"]

    elif market_type == "pearl":
        trades = trades_df.loc[trades_df["market_creator"] == "pearl"]
        color_sequence = ["purple"]
    else:
        trades = trades_df
        color_sequence = ["darkgreen"]

    fig = px.bar(
        trades,
        x="month_year_week",
        y="trades",
        color_discrete_sequence=color_sequence,
        title=market_type + " trades",
    )
    fig.update_layout(
        xaxis_title="Week",
        yaxis_title="Weekly nr of trades",
    )
    fig.update_xaxes(tickformat="%b %d\n%Y")
    return gr.Plot(
        value=fig,
    )


def integrated_plot_trades_per_market_by_week(trades_df: pd.DataFrame) -> gr.Plot:

    # adding the total
    trades_all = trades_df.copy(deep=True)
    trades_all["market_creator"] = "all"

    # merging both dataframes
    all_filtered_trades = pd.concat([trades_df, trades_all], ignore_index=True)
    all_filtered_trades = all_filtered_trades.sort_values(
        by="creation_timestamp", ascending=True
    )

    trades = get_overall_by_market_trades(all_filtered_trades)
    fig = px.bar(
        trades,
        x="month_year_week",
        y="trades",
        color="market_creator",
        barmode="group",
        color_discrete_sequence=["goldenrod", "darkgreen", "purple"],
    )
    fig.update_layout(
        xaxis_title="Week",
        yaxis_title="Weekly nr of trades",
        legend=dict(yanchor="top", y=0.5),
    )
    fig.update_layout(width=WIDTH, height=HEIGHT)
    fig.update_xaxes(tickformat="%b %d\n%Y")
    return gr.Plot(value=fig)


def integrated_plot_winning_trades_per_market_by_week(
    trades_df: pd.DataFrame,
) -> gr.Plot:
    # adding the total
    trades_all = trades_df.copy(deep=True)
    trades_all["market_creator"] = "all"

    # merging both dataframes
    all_filtered_trades = pd.concat([trades_df, trades_all], ignore_index=True)
    all_filtered_trades = all_filtered_trades.sort_values(
        by="creation_timestamp", ascending=True
    )
    final_df = get_overall_winning_by_market_trades(all_filtered_trades)
    fig = px.bar(
        final_df,
        x="month_year_week",
        y="winning_trade",
        color="market_creator",
        barmode="group",
        color_discrete_sequence=["goldenrod", "darkgreen", "purple"],
    )
    fig.update_layout(
        xaxis_title="Week",
        yaxis_title="Weekly % of winning trades",
        legend=dict(yanchor="top", y=0.5),
    )
    fig.update_layout(width=WIDTH, height=HEIGHT)
    fig.update_xaxes(tickformat="%b %d\n%Y")
    return gr.Plot(
        value=fig,
    )


def plot_winning_trades_by_week(trades_df: pd.DataFrame) -> gr.BarPlot:
    """Plots the winning trades data for the given tools and calculates the winning percentage."""
    return gr.BarPlot(
        value=trades_df,
        x="month_year_week",
        y="winning_trade",
        show_label=True,
        interactive=True,
        show_actions_button=True,
        tooltip=["month_year_week", "winning_trade"],
        height=HEIGHT,
        width=WIDTH,
    )


def plot_winning_trades_per_market_by_week(
    trades_df: pd.DataFrame, market_type: str
) -> gr.Plot:
    """Plots the winning trades data for the given tools and calculates the winning percentage."""
    # if market_type is "all then no filter is applied"
    if market_type == "quickstart":
        trades = trades_df.loc[trades_df["market_creator"] == "quickstart"]
        color_sequence = ["goldenrod"]

    elif market_type == "pearl":
        trades = trades_df.loc[trades_df["market_creator"] == "pearl"]
        color_sequence = ["purple"]
    else:
        trades = trades_df
        color_sequence = ["darkgreen"]

    fig = px.bar(
        trades,
        x="month_year_week",
        y="winning_trade",
        color_discrete_sequence=color_sequence,
        title=market_type + " winning trades",
    )
    fig.update_layout(
        xaxis_title="Week",
        yaxis_title="Weekly % of winning trades",
    )
    fig.update_xaxes(tickformat="%b %d\n%Y")
    return gr.Plot(
        value=fig,
    )