File size: 8,174 Bytes
c892f97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16f8a8e
e799adb
 
 
 
 
 
 
 
 
 
 
 
c892f97
 
 
 
 
 
e090d54
c892f97
e090d54
16f8a8e
 
 
e799adb
c892f97
7359e03
c892f97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e090d54
c892f97
16f8a8e
 
e090d54
 
 
 
 
c892f97
 
 
e090d54
c892f97
 
 
 
 
 
 
 
 
e090d54
16f8a8e
c892f97
 
e090d54
c892f97
 
 
e090d54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c892f97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e090d54
 
 
 
 
 
 
 
 
 
c892f97
 
7359e03
c892f97
 
 
 
 
e090d54
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
#   -*- coding: utf-8 -*-
#   ------------------------------------------------------------------------------
#
#     Copyright 2023 Valory AG
#
#     Licensed under the Apache License, Version 2.0 (the "License");
#     you may not use this file except in compliance with the License.
#     You may obtain a copy of the License at
#
#         http://www.apache.org/licenses/LICENSE-2.0
#
#     Unless required by applicable law or agreed to in writing, software
#     distributed under the License is distributed on an "AS IS" BASIS,
#     WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#     See the License for the specific language governing permissions and
#     limitations under the License.
#
#   ------------------------------------------------------------------------------

import functools
import warnings
from string import Template
from typing import Optional, Generator, Callable

import pandas as pd
import requests
from tqdm import tqdm

from typing import List, Dict
from pathlib import Path
from utils import SUBGRAPH_API_KEY
from queries import (
    FPMMS_QUERY,
    ID_FIELD,
    DATA_FIELD,
    ANSWER_FIELD,
    QUERY_FIELD,
    TITLE_FIELD,
    OUTCOMES_FIELD,
    ERROR_FIELD,
    QUESTION_FIELD,
    FPMMS_FIELD,
)

ResponseItemType = List[Dict[str, str]]
SubgraphResponseType = Dict[str, ResponseItemType]


CREATOR = "0x89c5cc945dd550BcFfb72Fe42BfF002429F46Fec"
PEARL_CREATOR = "0xFfc8029154ECD55ABED15BD428bA596E7D23f557"
BATCH_SIZE = 1000

OMEN_SUBGRAPH_URL = Template(
    """https://gateway-arbitrum.network.thegraph.com/api/${subgraph_api_key}/subgraphs/id/9fUVQpFwzpdWS9bq5WkAnmKbNNcoBwatMR4yZq81pbbz"""
)

MAX_UINT_HEX = "0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff"
DEFAULT_FILENAME = "fpmms.parquet"
SCRIPTS_DIR = Path(__file__).parent
ROOT_DIR = SCRIPTS_DIR.parent
DATA_DIR = ROOT_DIR / "data"


class RetriesExceeded(Exception):
    """Exception to raise when retries are exceeded during data-fetching."""

    def __init__(
        self, msg="Maximum retries were exceeded while trying to fetch the data!"
    ):
        super().__init__(msg)


def hacky_retry(func: Callable, n_retries: int = 3) -> Callable:
    """Create a hacky retry strategy.
        Unfortunately, we cannot use `requests.packages.urllib3.util.retry.Retry`,
        because the subgraph does not return the appropriate status codes in case of failure.
        Instead, it always returns code 200. Thus, we raise exceptions manually inside `make_request`,
        catch those exceptions in the hacky retry decorator and try again.
        Finally, if the allowed number of retries is exceeded, we raise a custom `RetriesExceeded` exception.

    :param func: the input request function.
    :param n_retries: the maximum allowed number of retries.
    :return: The request method with the hacky retry strategy applied.
    """

    @functools.wraps(func)
    def wrapper_hacky_retry(*args, **kwargs) -> SubgraphResponseType:
        """The wrapper for the hacky retry.

        :return: a response dictionary.
        """
        retried = 0

        while retried <= n_retries:
            try:
                if retried > 0:
                    warnings.warn(f"Retrying {retried}/{n_retries}...")

                return func(*args, **kwargs)
            except (ValueError, ConnectionError) as e:
                warnings.warn(e.args[0])
            finally:
                retried += 1

        raise RetriesExceeded()

    return wrapper_hacky_retry


@hacky_retry
def query_subgraph(url: str, query: str, key: str) -> SubgraphResponseType:
    """Query a subgraph.

    Args:
        url: the subgraph's URL.
        query: the query to be used.
        key: the key to use in order to access the required data.

    Returns:
        a response dictionary.
    """
    content = {QUERY_FIELD: query}
    headers = {
        "Accept": "application/json",
        "Content-Type": "application/json",
    }
    res = requests.post(url, json=content, headers=headers)

    if res.status_code != 200:
        raise ConnectionError(
            "Something went wrong while trying to communicate with the subgraph "
            f"(Error: {res.status_code})!\n{res.text}"
        )

    body = res.json()
    if ERROR_FIELD in body.keys():
        raise ValueError(f"The given query is not correct: {body[ERROR_FIELD]}")

    data = body.get(DATA_FIELD, {}).get(key, None)
    if data is None:
        raise ValueError(f"Unknown error encountered!\nRaw response: \n{body}")

    return data


def fpmms_fetcher(trader_category: str) -> Generator[ResponseItemType, int, None]:
    """An indefinite fetcher for the FPMMs."""
    omen_subgraph = OMEN_SUBGRAPH_URL.substitute(subgraph_api_key=SUBGRAPH_API_KEY)
    print(f"omen_subgraph = {omen_subgraph}")

    if trader_category == "pearl":
        creator_id = PEARL_CREATOR
    else:  # quickstart
        creator_id = CREATOR
    while True:
        fpmm_id = yield
        fpmms_query = FPMMS_QUERY.substitute(
            creator=creator_id,
            fpmm_id=fpmm_id,
            fpmms_field=FPMMS_FIELD,
            first=BATCH_SIZE,
            id_field=ID_FIELD,
            answer_field=ANSWER_FIELD,
            question_field=QUESTION_FIELD,
            outcomes_field=OUTCOMES_FIELD,
            title_field=TITLE_FIELD,
        )
        print(f"markets query = {fpmms_query}")
        yield query_subgraph(omen_subgraph, fpmms_query, FPMMS_FIELD)


def fetch_qs_fpmms() -> pd.DataFrame:
    """Fetch all the fpmms of the creator."""
    latest_id = ""
    fpmms = []
    trader_category = "quickstart"
    print(f"Getting markets for {trader_category}")
    fetcher = fpmms_fetcher(trader_category)
    for _ in tqdm(fetcher, unit="fpmms", unit_scale=BATCH_SIZE):
        batch = fetcher.send(latest_id)
        if len(batch) == 0:
            break

        latest_id = batch[-1].get(ID_FIELD, "")
        if latest_id == "":
            raise ValueError(f"Unexpected data format retrieved: {batch}")

        fpmms.extend(batch)

    return pd.DataFrame(fpmms)


def fetch_pearl_fpmms() -> pd.DataFrame:
    """Fetch all the fpmms of the creator."""
    latest_id = ""
    fpmms = []
    trader_category = "pearl"
    print(f"Getting markets for {trader_category}")
    fetcher = fpmms_fetcher(trader_category)
    for _ in tqdm(fetcher, unit="fpmms", unit_scale=BATCH_SIZE):
        batch = fetcher.send(latest_id)
        if len(batch) == 0:
            break

        latest_id = batch[-1].get(ID_FIELD, "")
        if latest_id == "":
            raise ValueError(f"Unexpected data format retrieved: {batch}")

        fpmms.extend(batch)

    return pd.DataFrame(fpmms)


def get_answer(fpmm: pd.Series) -> str:
    """Get an answer from its index, using Series of an FPMM."""
    return fpmm[QUESTION_FIELD][OUTCOMES_FIELD][fpmm[ANSWER_FIELD]]


def transform_fpmms(fpmms: pd.DataFrame) -> pd.DataFrame:
    """Transform an FPMMS dataframe."""
    transformed = fpmms.dropna()
    transformed = transformed.drop_duplicates([ID_FIELD])
    transformed = transformed.loc[transformed[ANSWER_FIELD] != MAX_UINT_HEX]
    transformed.loc[:, ANSWER_FIELD] = (
        transformed[ANSWER_FIELD].str.slice(-1).astype(int)
    )
    transformed.loc[:, ANSWER_FIELD] = transformed.apply(get_answer, axis=1)
    transformed = transformed.drop(columns=[QUESTION_FIELD])

    return transformed


def etl(filename: Optional[str] = None) -> pd.DataFrame:
    """Fetch, process, store and return the markets as a Dataframe."""
    qs_fpmms = fetch_qs_fpmms()
    qs_fpmms = transform_fpmms(qs_fpmms)
    qs_fpmms["market_creator"] = "quickstart"
    print(f"Results for the market creator quickstart. Len = {len(qs_fpmms)}")

    pearl_fpmms = fetch_pearl_fpmms()
    pearl_fpmms = transform_fpmms(pearl_fpmms)
    pearl_fpmms["market_creator"] = "pearl"
    print(f"Results for the market creator quickstart. Len = {len(pearl_fpmms)}")
    fpmms = pd.concat([qs_fpmms, pearl_fpmms], ignore_index=True)

    if filename:
        fpmms.to_parquet(DATA_DIR / filename, index=False)

    return fpmms


if __name__ == "__main__":
    etl("all_fpmms.parquet")