File size: 21,814 Bytes
c892f97 03219e6 c892f97 cf2f2ff c892f97 60adc3e c892f97 d81ea9b c811726 0d1c710 c811726 acc99f2 03219e6 c811726 c892f97 d81ea9b c892f97 7359e03 c892f97 d81ea9b c892f97 c811726 c892f97 c811726 c892f97 a7bccf4 03219e6 c892f97 03219e6 c892f97 03219e6 c892f97 03219e6 c892f97 03219e6 c892f97 c811726 c892f97 7359e03 c892f97 c811726 c892f97 7359e03 c892f97 c811726 7359e03 c811726 7359e03 c811726 03219e6 7359e03 c892f97 c811726 cf2f2ff c811726 c892f97 acc99f2 c892f97 c811726 c892f97 cf2f2ff c892f97 c811726 c892f97 c811726 c892f97 c811726 c892f97 c811726 c892f97 c811726 c892f97 c811726 c892f97 b84f0da 03219e6 675f8b1 60adc3e 03219e6 b84f0da 03219e6 b84f0da 03219e6 b84f0da 03219e6 b84f0da 03219e6 c892f97 c811726 c892f97 c811726 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 |
# -*- coding: utf-8 -*-
# ------------------------------------------------------------------------------
#
# Copyright 2023 Valory AG
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# ------------------------------------------------------------------------------
import os.path
import json
import time
import random
from typing import (
Optional,
List,
Dict,
Union,
Any,
)
import pandas as pd
import requests
from eth_typing import ChecksumAddress
from eth_utils import to_checksum_address
from requests.adapters import HTTPAdapter
from requests.exceptions import (
ReadTimeout as RequestsReadTimeoutError,
HTTPError as RequestsHTTPError,
)
from tqdm import tqdm
from urllib3 import Retry
from urllib3.exceptions import (
ReadTimeoutError as Urllib3ReadTimeoutError,
HTTPError as Urllib3HTTPError,
)
from web3 import Web3, HTTPProvider
from markets import add_market_creator
from concurrent.futures import ThreadPoolExecutor, as_completed
from web3_utils import (
read_abi,
SLEEP,
reduce_window,
LATEST_BLOCK,
LATEST_BLOCK_NAME,
BLOCK_DATA_NUMBER,
BLOCKS_CHUNK_SIZE,
N_RPC_RETRIES,
N_IPFS_RETRIES,
RPC_POLL_INTERVAL,
IPFS_POLL_INTERVAL,
)
from utils import (
clean,
BLOCK_FIELD,
gen_event_filename,
limit_text,
DATA_DIR,
JSON_DATA_DIR,
REQUEST_ID_FIELD,
MechEvent,
MechEventName,
MechRequest,
MechResponse,
EVENT_TO_MECH_STRUCT,
REQUEST_ID,
HTTP,
HTTPS,
REQUEST_SENDER,
get_result_values,
get_vote,
get_win_probability,
get_prediction_values,
)
CONTRACTS_PATH = "contracts"
MECH_TO_INFO = {
# this block number is when the creator had its first tx ever, and after this mech's creation
"0xff82123dfb52ab75c417195c5fdb87630145ae81": ("old_mech_abi.json", 28911547),
# this block number is when this mech was created
"0x77af31de935740567cf4ff1986d04b2c964a786a": ("new_mech_abi.json", 30776879),
}
# optionally set the latest block to stop searching for the delivered events
EVENT_ARGUMENTS = "args"
DATA = "data"
IPFS_LINKS_SERIES_NAME = "ipfs_links"
BACKOFF_FACTOR = 1
STATUS_FORCELIST = [404, 500, 502, 503, 504]
DEFAULT_FILENAME = "tools.parquet"
RE_RPC_FILTER_ERROR = r"Filter with id: '\d+' does not exist."
ABI_ERROR = "The event signature did not match the provided ABI"
HTTP_TIMEOUT = 10
IRRELEVANT_TOOLS = [
"openai-text-davinci-002",
"openai-text-davinci-003",
"openai-gpt-3.5-turbo",
"openai-gpt-4",
"stabilityai-stable-diffusion-v1-5",
"stabilityai-stable-diffusion-xl-beta-v2-2-2",
"stabilityai-stable-diffusion-512-v2-1",
"stabilityai-stable-diffusion-768-v2-1",
"deepmind-optimization-strong",
"deepmind-optimization",
]
# this is how frequently we will keep a snapshot of the progress so far in terms of blocks' batches
# for example, the value 1 means that for every `BLOCKS_CHUNK_SIZE` blocks that we search,
# we also store the snapshot
SNAPSHOT_RATE = 10
NUM_WORKERS = 10
GET_CONTENTS_BATCH_SIZE = 1000
def get_events(
w3: Web3,
event: str,
mech_address: ChecksumAddress,
mech_abi_path: str,
earliest_block: int,
latest_block: int,
) -> List:
"""Get the delivered events."""
abi = read_abi(mech_abi_path)
contract_instance = w3.eth.contract(address=mech_address, abi=abi)
events = []
from_block = earliest_block
batch_size = BLOCKS_CHUNK_SIZE
with tqdm(
total=latest_block - from_block,
desc=f"Searching {event} events for mech {mech_address}",
unit="blocks",
) as pbar:
while from_block < latest_block:
events_filter = contract_instance.events[event].build_filter()
events_filter.fromBlock = from_block
events_filter.toBlock = min(from_block + batch_size, latest_block)
entries = None
retries = 0
while entries is None:
try:
entries = events_filter.deploy(w3).get_all_entries()
retries = 0
except (RequestsHTTPError, Urllib3HTTPError) as exc:
if "Request Entity Too Large" in exc.args[0]:
events_filter, batch_size = reduce_window(
contract_instance,
event,
from_block,
batch_size,
latest_block,
)
except (Urllib3ReadTimeoutError, RequestsReadTimeoutError):
events_filter, batch_size = reduce_window(
contract_instance, event, from_block, batch_size, latest_block
)
except Exception as exc:
retries += 1
if retries == N_RPC_RETRIES:
tqdm.write(
f"Skipping events for blocks {events_filter.fromBlock} - {events_filter.toBlock} "
f"as the retries have been exceeded."
)
break
sleep = SLEEP * retries
# error_message = ""
# if isinstance(exc.args[0], str):
# error_message = exc.args[0]
# elif isinstance(exc, ValueError):
# error_message = exc.args[0].get("message", "")
# if (
# (
# isinstance(exc, ValueError)
# and re.match(RE_RPC_FILTER_ERROR, error_message) is None
# )
# and not isinstance(exc, ValueError)
# and not isinstance(exc, MismatchedABI)
# ):
tqdm.write(
f"An error was raised from the RPC: {exc}\n Retrying in {sleep} seconds."
)
if hasattr(exc, "message"):
tqdm.write(f"Error message: {exc.message}\n")
time.sleep(sleep)
from_block += batch_size
pbar.update(batch_size)
if entries is None:
continue
chunk = list(entries)
events.extend(chunk)
time.sleep(RPC_POLL_INTERVAL)
return events
def parse_events(raw_events: List) -> List[MechEvent]:
# TODO use dictionary instead of List
"""Parse all the specified MechEvents."""
parsed_events = []
for event in raw_events:
for_block = event.get("blockNumber", 0)
args = event.get(EVENT_ARGUMENTS, {})
request_id = args.get(REQUEST_ID, 0)
data = args.get(DATA, b"")
sender = args.get(REQUEST_SENDER, "")
parsed_event = MechEvent(for_block, request_id, data, sender)
parsed_events.append(parsed_event)
return parsed_events
def parse_dict_events(events_dict: dict) -> List[MechEvent]:
# TODO use dictionary instead of List
"""Parse all the specified MechEvents."""
parsed_events = []
list_ids = list(events_dict.keys())
for mech_id in list_ids:
event = events_dict[mech_id]
for_block = event.get("blockNumber", 0)
args = event.get(EVENT_ARGUMENTS, {})
request_id = args.get(REQUEST_ID, 0)
data = args.get(DATA, b"")
sender = args.get(REQUEST_SENDER, "")
parsed_event = MechEvent(for_block, request_id, data, sender)
parsed_events.append(parsed_event)
return parsed_events
def create_session() -> requests.Session:
"""Create a session with a retry strategy."""
session = requests.Session()
retry_strategy = Retry(
total=N_IPFS_RETRIES + 1,
backoff_factor=BACKOFF_FACTOR,
status_forcelist=STATUS_FORCELIST,
)
adapter = HTTPAdapter(max_retries=retry_strategy)
for protocol in (HTTP, HTTPS):
session.mount(protocol, adapter)
return session
def request(
session: requests.Session, url: str, timeout: int = HTTP_TIMEOUT
) -> Optional[requests.Response]:
"""Perform a request with a session."""
try:
response = session.get(url, timeout=timeout)
response.raise_for_status()
except requests.exceptions.HTTPError as exc:
tqdm.write(f"HTTP error occurred: {exc}.")
except Exception as exc:
tqdm.write(f"Unexpected error occurred: {exc}.")
else:
return response
return None
def parse_ipfs_response(
session: requests.Session,
url: str,
event: MechEvent,
event_name: MechEventName,
response: requests.Response,
) -> Optional[Dict[str, str]]:
"""Parse a response from IPFS."""
try:
return response.json()
except requests.exceptions.JSONDecodeError:
# this is a workaround because the `metadata.json` file was introduced and removed multiple times
if event_name == MechEvent.REQUEST and url != event.ipfs_request_link:
url = event.ipfs_request_link
response = request(session, url)
if response is None:
tqdm.write(f"Skipping {event=}.")
return None
try:
return response.json()
except requests.exceptions.JSONDecodeError:
pass
tqdm.write(f"Failed to parse response into json for {url=}.")
return None
def parse_ipfs_tools_content(
raw_content: Dict[str, str], event: MechEvent, event_name: MechEventName
) -> Optional[Union[MechRequest, MechResponse]]:
"""Parse tools content from IPFS."""
struct = EVENT_TO_MECH_STRUCT.get(event_name)
raw_content[REQUEST_ID] = str(event.requestId)
raw_content[BLOCK_FIELD] = str(event.for_block)
raw_content["sender"] = str(event.sender)
try:
mech_response = struct(**raw_content)
except (ValueError, TypeError, KeyError):
tqdm.write(f"Could not parse {limit_text(str(raw_content))}")
return None
if event_name == MechEventName.REQUEST and mech_response.tool in IRRELEVANT_TOOLS:
return None
return mech_response
def get_contents(
session: requests.Session, events: List[MechEvent], event_name: MechEventName
) -> pd.DataFrame:
"""Fetch the tools' responses."""
contents = []
for event in tqdm(events, desc=f"Tools' results", unit="results"):
url = event.ipfs_link(event_name)
response = request(session, url)
if response is None:
tqdm.write(f"Skipping {event=}.")
continue
raw_content = parse_ipfs_response(session, url, event, event_name, response)
if raw_content is None:
continue
mech_response = parse_ipfs_tools_content(raw_content, event, event_name)
if mech_response is None:
continue
contents.append(mech_response)
time.sleep(IPFS_POLL_INTERVAL)
return pd.DataFrame(contents)
def parse_json_events(json_events: dict, keys_to_traverse: List[int]) -> pd.DataFrame:
"""Function to parse the mech info in a json format"""
all_records = []
for key in keys_to_traverse:
try:
json_input = json_events[key]
output = {}
output["request_id"] = json_input["requestId"]
output["request_block"] = json_input["blockNumber"]
output["prompt_request"] = json_input["ipfsContents"]["prompt"]
output["tool"] = json_input["ipfsContents"]["tool"]
output["nonce"] = json_input["ipfsContents"]["nonce"]
output["trader_address"] = json_input["sender"]
output["deliver_block"] = json_input["deliver"]["blockNumber"]
error_value, error_message, prediction_params = get_result_values(
json_input["deliver"]["ipfsContents"]["result"]
)
error_message_value = json_input.get("error_message", error_message)
output["error"] = error_value
output["error_message"] = error_message_value
output["prompt_response"] = json_input["deliver"]["ipfsContents"]["prompt"]
output["mech_address"] = json_input["deliver"]["sender"]
p_yes_value, p_no_value, confidence_value, info_utility_value = (
get_prediction_values(prediction_params)
)
output["p_yes"] = p_yes_value
output["p_no"] = p_no_value
output["confidence"] = confidence_value
output["info_utility"] = info_utility_value
output["vote"] = get_vote(p_yes_value, p_no_value)
output["win_probability"] = get_win_probability(p_yes_value, p_no_value)
all_records.append(output)
except Exception as e:
print(e)
print(f"Error parsing the key ={key}. Noted as error")
output["error"] = 1
output["error_message"] = "Response parsing error"
output["p_yes"] = None
output["p_no"] = None
output["confidence"] = None
output["info_utility"] = None
output["vote"] = None
output["win_probability"] = None
all_records.append(output)
return pd.DataFrame.from_dict(all_records, orient="columns")
def transform_request(contents: pd.DataFrame) -> pd.DataFrame:
"""Transform the requests dataframe."""
return clean(contents)
def transform_deliver(contents: pd.DataFrame) -> pd.DataFrame:
"""Transform the delivers dataframe."""
unpacked_result = pd.json_normalize(contents.result)
# # drop result column if it exists
if "result" in unpacked_result.columns:
unpacked_result.drop(columns=["result"], inplace=True)
# drop prompt column if it exists
if "prompt" in unpacked_result.columns:
unpacked_result.drop(columns=["prompt"], inplace=True)
# rename prompt column to prompt_deliver
unpacked_result.rename(columns={"prompt": "prompt_deliver"}, inplace=True)
contents = pd.concat((contents, unpacked_result), axis=1)
if "result" in contents.columns:
contents.drop(columns=["result"], inplace=True)
if "prompt" in contents.columns:
contents.drop(columns=["prompt"], inplace=True)
return clean(contents)
def store_progress(
filename: str,
event_to_contents: Dict[str, pd.DataFrame],
tools: pd.DataFrame,
) -> None:
"""Store the given progress."""
print("storing given progress")
if filename:
DATA_DIR.mkdir(parents=True, exist_ok=True) # Ensure the directory exists
for event_name, content in event_to_contents.items():
event_filename = gen_event_filename(
event_name
) # Ensure this function returns a valid filename string
try:
if "result" in content.columns:
content = content.drop(
columns=["result"]
) # Avoid in-place modification
content.to_parquet(DATA_DIR / event_filename, index=False)
except Exception as e:
print(f"Failed to write {event_name} data: {e}")
# Drop result columns for tools DataFrame
try:
if "result" in tools.columns:
tools = tools.drop(columns=["result"])
tools.to_parquet(DATA_DIR / filename, index=False)
except Exception as e:
print(f"Failed to write tools data: {e}")
def etl(
rpcs: List[str],
mech_info: dict[str, Any],
filename: Optional[str] = None,
) -> pd.DataFrame:
"""Fetch from on-chain events, process, store and return the tools' results on
all the questions as a Dataframe."""
w3s = [Web3(HTTPProvider(r)) for r in rpcs]
session = create_session()
event_to_transformer = {
MechEventName.REQUEST: transform_request,
MechEventName.DELIVER: transform_deliver,
}
mech_to_info = {
to_checksum_address(address): (
os.path.join(CONTRACTS_PATH, filename),
earliest_block,
)
for address, (filename, earliest_block) in mech_info.items()
}
event_to_contents = {}
latest_block = LATEST_BLOCK
if latest_block is None:
latest_block = w3s[0].eth.get_block(LATEST_BLOCK_NAME)[BLOCK_DATA_NUMBER]
next_start_block = None
# Loop through events in event_to_transformer
for event_name, transformer in event_to_transformer.items():
# if next_start_block is None:
# next_start_block_base = get_earliest_block(event_name)
# Loop through mech addresses in mech_to_info
events = []
for address, (abi, earliest_block) in mech_to_info.items():
next_start_block = earliest_block
print(
f"Searching for {event_name.value} events for mech {address} from block {next_start_block} to {latest_block}."
)
# parallelize the fetching of events
with ThreadPoolExecutor(max_workers=NUM_WORKERS) as executor:
futures = []
for i in range(
next_start_block, latest_block, BLOCKS_CHUNK_SIZE * SNAPSHOT_RATE
):
futures.append(
executor.submit(
get_events,
random.choice(w3s),
event_name.value,
address,
abi,
i,
min(i + BLOCKS_CHUNK_SIZE * SNAPSHOT_RATE, latest_block),
)
)
for future in tqdm(
as_completed(futures),
total=len(futures),
desc=f"Fetching {event_name.value} Events",
):
current_mech_events = future.result()
events.extend(current_mech_events)
print("Parsing events")
parsed = parse_events(events)
contents = []
with ThreadPoolExecutor(max_workers=NUM_WORKERS) as executor:
futures = []
for i in range(0, len(parsed), GET_CONTENTS_BATCH_SIZE):
futures.append(
executor.submit(
get_contents,
session,
parsed[i : i + GET_CONTENTS_BATCH_SIZE],
event_name,
)
)
for future in tqdm(
as_completed(futures),
total=len(futures),
desc=f"Fetching {event_name.value} Contents",
):
current_mech_contents = future.result()
contents.append(current_mech_contents)
contents = pd.concat(contents, ignore_index=True)
transformed = transformer(contents)
event_to_contents[event_name] = transformed.copy()
# Store progress
tools = pd.merge(*event_to_contents.values(), on=REQUEST_ID_FIELD)
print(tools.info())
store_progress(filename, event_to_contents, tools)
return tools
def parse_store_json_events_parallel(json_events: Dict[str, Any], output_filename: str):
total_nr_events = len(json_events)
ids_to_traverse = list(json_events.keys())
print(f"Parsing {total_nr_events} events")
contents = []
with ThreadPoolExecutor(max_workers=NUM_WORKERS) as executor:
futures = []
for i in range(0, total_nr_events, GET_CONTENTS_BATCH_SIZE):
futures.append(
executor.submit(
parse_json_events,
json_events,
ids_to_traverse[i : i + GET_CONTENTS_BATCH_SIZE],
)
)
for future in tqdm(
as_completed(futures),
total=len(futures),
desc=f"Fetching json contents",
):
current_mech_contents = future.result()
contents.append(current_mech_contents)
tools = pd.concat(contents, ignore_index=True)
print(f"Adding market creators info. Length of the tools file = {len(tools)}")
tools = add_market_creator(tools)
print(
f"Length of the tools dataframe after adding market creators info= {len(tools)}"
)
print(tools.info())
try:
if "result" in tools.columns:
tools = tools.drop(columns=["result"])
tools.to_parquet(DATA_DIR / output_filename, index=False)
except Exception as e:
print(f"Failed to write tools data: {e}")
return tools
def generate_tools_file(input_filename: str, output_filename: str):
"""Function to parse the json mech events and generate the parquet tools file"""
try:
with open(JSON_DATA_DIR / input_filename, "r") as file:
file_contents = json.load(file)
parse_store_json_events_parallel(file_contents, output_filename)
except Exception as e:
print(f"An Exception happened while parsing the json events {e}")
if __name__ == "__main__":
RPCs = [
"https://lb.nodies.app/v1/406d8dcc043f4cb3959ed7d6673d311a",
]
filename = DEFAULT_FILENAME
tools = etl(rpcs=RPCs, filename=filename)
|