rosacastillo's picture
fixing ui plot issue and adding new tool
18afe53
raw
history blame
12.9 kB
import sys
import json
import os
import time
from tqdm import tqdm
from typing import List, Any, Optional, Union, Tuple
import numpy as np
import pandas as pd
import gc
import re
from dataclasses import dataclass
from pathlib import Path
from enum import Enum
from json.decoder import JSONDecodeError
REDUCE_FACTOR = 0.25
SLEEP = 0.5
REQUEST_ID_FIELD = "request_id"
SCRIPTS_DIR = Path(__file__).parent
ROOT_DIR = SCRIPTS_DIR.parent
DATA_DIR = ROOT_DIR / "data"
JSON_DATA_DIR = ROOT_DIR / "json_data"
BLOCK_FIELD = "block"
CID_PREFIX = "f01701220"
REQUEST_ID = "requestId"
REQUEST_SENDER = "sender"
PROMPT_FIELD = "prompt"
HTTP = "http://"
HTTPS = HTTP[:4] + "s" + HTTP[4:]
IPFS_ADDRESS = f"{HTTPS}gateway.autonolas.tech/ipfs/"
FORMAT_UPDATE_BLOCK_NUMBER = 30411638
INVALID_ANSWER_HEX = (
"0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff"
)
INC_TOOLS = [
"prediction-online",
"prediction-offline",
"claude-prediction-online",
"claude-prediction-offline",
"prediction-offline-sme",
"prediction-online-sme",
"prediction-request-rag",
"prediction-request-reasoning",
"prediction-url-cot-claude",
"prediction-request-rag-claude",
"prediction-request-reasoning-claude",
"superforcaster",
]
SUBGRAPH_API_KEY = os.environ.get("SUBGRAPH_API_KEY", None)
RPC = os.environ.get("RPC", None)
class MechEventName(Enum):
"""The mech's event names."""
REQUEST = "Request"
DELIVER = "Deliver"
@dataclass
class MechEvent:
"""A mech's on-chain event representation."""
for_block: int
requestId: int
data: bytes
sender: str
def _ipfs_link(self) -> Optional[str]:
"""Get the ipfs link for the data."""
return f"{IPFS_ADDRESS}{CID_PREFIX}{self.data.hex()}"
@property
def ipfs_request_link(self) -> Optional[str]:
"""Get the IPFS link for the request."""
return f"{self._ipfs_link()}/metadata.json"
@property
def ipfs_deliver_link(self) -> Optional[str]:
"""Get the IPFS link for the deliver."""
if self.requestId is None:
return None
return f"{self._ipfs_link()}/{self.requestId}"
def ipfs_link(self, event_name: MechEventName) -> Optional[str]:
"""Get the ipfs link based on the event."""
if event_name == MechEventName.REQUEST:
if self.for_block < FORMAT_UPDATE_BLOCK_NUMBER:
return self._ipfs_link()
return self.ipfs_request_link
if event_name == MechEventName.DELIVER:
return self.ipfs_deliver_link
return None
@dataclass(init=False)
class MechRequest:
"""A structure for a request to a mech."""
request_id: Optional[int]
request_block: Optional[int]
prompt_request: Optional[str]
tool: Optional[str]
nonce: Optional[str]
trader_address: Optional[str]
def __init__(self, **kwargs: Any) -> None:
"""Initialize the request ignoring extra keys."""
self.request_id = int(kwargs.pop(REQUEST_ID, 0))
self.request_block = int(kwargs.pop(BLOCK_FIELD, 0))
self.prompt_request = kwargs.pop(PROMPT_FIELD, None)
self.tool = kwargs.pop("tool", None)
self.nonce = kwargs.pop("nonce", None)
self.trader_address = kwargs.pop("sender", None)
@dataclass(init=False)
class PredictionResponse:
"""A response of a prediction."""
p_yes: float
p_no: float
confidence: float
info_utility: float
vote: Optional[str]
win_probability: Optional[float]
def __init__(self, **kwargs: Any) -> None:
"""Initialize the mech's prediction ignoring extra keys."""
try:
self.p_yes = float(kwargs.pop("p_yes"))
self.p_no = float(kwargs.pop("p_no"))
self.confidence = float(kwargs.pop("confidence"))
self.info_utility = float(kwargs.pop("info_utility"))
self.win_probability = 0
# Validate probabilities
probabilities = {
"p_yes": self.p_yes,
"p_no": self.p_no,
"confidence": self.confidence,
"info_utility": self.info_utility,
}
for name, prob in probabilities.items():
if not 0 <= prob <= 1:
raise ValueError(f"{name} probability is out of bounds: {prob}")
if self.p_yes + self.p_no != 1:
raise ValueError(
f"Sum of p_yes and p_no is not 1: {self.p_yes} + {self.p_no}"
)
self.vote = self.get_vote()
self.win_probability = self.get_win_probability()
except KeyError as e:
raise KeyError(f"Missing key in PredictionResponse: {e}")
except ValueError as e:
raise ValueError(f"Invalid value in PredictionResponse: {e}")
def get_vote(self) -> Optional[str]:
"""Return the vote."""
if self.p_no == self.p_yes:
return None
if self.p_no > self.p_yes:
return "No"
return "Yes"
def get_win_probability(self) -> Optional[float]:
"""Return the probability estimation for winning with vote."""
return max(self.p_no, self.p_yes)
@dataclass(init=False)
class MechResponse:
"""A structure for the response of a mech."""
request_id: int
deliver_block: Optional[int]
result: Optional[PredictionResponse]
error: Optional[str]
error_message: Optional[str]
prompt_response: Optional[str]
mech_address: Optional[str]
def __init__(self, **kwargs: Any) -> None:
"""Initialize the mech's response ignoring extra keys."""
self.error = kwargs.get("error", None)
self.request_id = int(kwargs.get(REQUEST_ID, 0))
self.deliver_block = int(kwargs.get(BLOCK_FIELD, 0))
self.result = kwargs.get("result", None)
self.prompt_response = kwargs.get(PROMPT_FIELD, None)
self.mech_address = kwargs.get("sender", None)
if self.result != "Invalid response":
self.error_message = kwargs.get("error_message", None)
try:
if isinstance(self.result, str):
kwargs = json.loads(self.result)
self.result = PredictionResponse(**kwargs)
self.error = 0
except JSONDecodeError:
self.error_message = "Response parsing error"
self.error = 1
except Exception as e:
self.error_message = str(e)
self.error = 1
else:
self.error_message = "Invalid response from tool"
self.error = 1
self.result = None
EVENT_TO_MECH_STRUCT = {
MechEventName.REQUEST: MechRequest,
MechEventName.DELIVER: MechResponse,
}
def measure_execution_time(func):
def wrapper(*args, **kwargs):
start_time = time.time()
result = func(*args, **kwargs)
end_time = time.time()
execution_time = end_time - start_time
print(f"Execution time: {execution_time:.6f} seconds")
return result
return wrapper
def parse_args() -> str:
"""Parse the arguments and return the RPC."""
if len(sys.argv) != 2:
raise ValueError("Expected the RPC as a positional argument.")
return sys.argv[1]
def read_abi(abi_path: str) -> str:
"""Read and return the wxDAI contract's ABI."""
with open(abi_path) as abi_file:
return abi_file.read()
def reduce_window(contract_instance, event, from_block, batch_size, latest_block):
"""Dynamically reduce the batch size window."""
keep_fraction = 1 - REDUCE_FACTOR
events_filter = contract_instance.events[event].build_filter()
events_filter.fromBlock = from_block
batch_size = int(batch_size * keep_fraction)
events_filter.toBlock = min(from_block + batch_size, latest_block)
tqdm.write(f"RPC timed out! Resizing batch size to {batch_size}.")
time.sleep(SLEEP)
return events_filter, batch_size
def limit_text(text: str, limit: int = 200) -> str:
"""Limit the given text"""
if len(text) > limit:
return f"{text[:limit]}..."
return text
def check_for_dicts(df: pd.DataFrame) -> List[str]:
"""Check for columns that contain dictionaries."""
dict_columns = []
for column in df.columns:
if df[column].apply(lambda x: isinstance(x, dict)).any():
dict_columns.append(column)
return dict_columns
def drop_dict_rows(df: pd.DataFrame, dict_columns: List[str]) -> pd.DataFrame:
"""Drop rows that contain dictionaries."""
for column in dict_columns:
df = df[~df[column].apply(lambda x: isinstance(x, dict))]
return df
def clean(df: pd.DataFrame) -> pd.DataFrame:
"""Clean the dataframe."""
dict_columns = check_for_dicts(df)
df = drop_dict_rows(df, dict_columns)
cleaned = df.drop_duplicates()
cleaned[REQUEST_ID_FIELD] = cleaned[REQUEST_ID_FIELD].astype("str")
return cleaned
def gen_event_filename(event_name: MechEventName) -> str:
"""Generate the filename of an event."""
return f"{event_name.value.lower()}s.parquet"
def read_n_last_lines(filename: str, n: int = 1) -> str:
"""Return the `n` last lines' content of a file."""
num_newlines = 0
with open(filename, "rb") as f:
try:
f.seek(-2, os.SEEK_END)
while num_newlines < n:
f.seek(-2, os.SEEK_CUR)
if f.read(1) == b"\n":
num_newlines += 1
except OSError:
f.seek(0)
last_line = f.readline().decode()
return last_line
def get_earliest_block(event_name: MechEventName) -> int:
"""Get the earliest block number to use when filtering for events."""
filename = gen_event_filename(event_name)
if not os.path.exists(DATA_DIR / filename):
return 0
df = pd.read_parquet(DATA_DIR / filename)
block_field = f"{event_name.value.lower()}_{BLOCK_FIELD}"
earliest_block = int(df[block_field].max())
# clean and release all memory
del df
gc.collect()
return earliest_block
def get_question(text: str) -> str:
"""Get the question from a text."""
# Regex to find text within double quotes
pattern = r'"([^"]*)"'
# Find all occurrences
questions = re.findall(pattern, text)
# Assuming you want the first question if there are multiple
question = questions[0] if questions else None
return question
def current_answer(text: str, fpmms: pd.DataFrame) -> Optional[str]:
"""Get the current answer for a question."""
row = fpmms[fpmms["title"] == text]
if row.shape[0] == 0:
return None
return row["currentAnswer"].values[0]
def convert_hex_to_int(x: Union[str, float]) -> Union[int, float]:
"""Convert hex to int"""
if isinstance(x, float):
return np.nan
if isinstance(x, str):
if x == INVALID_ANSWER_HEX:
return -1
return int(x, 16)
def wei_to_unit(wei: int) -> float:
"""Converts wei to currency unit."""
return wei / 10**18
def measure_execution_time(func):
def wrapper(*args, **kwargs):
start_time = time.time()
result = func(*args, **kwargs)
end_time = time.time()
execution_time = end_time - start_time
print(f"Execution time: {execution_time:.6f} seconds")
return result
return wrapper
def get_vote(p_yes, p_no) -> Optional[str]:
"""Return the vote."""
if p_no == p_yes:
return None
if p_no > p_yes:
return "No"
return "Yes"
def get_win_probability(p_yes, p_no) -> Optional[float]:
"""Return the probability estimation for winning with vote."""
return max(p_no, p_yes)
def get_result_values(result: str) -> Tuple:
if result == "Invalid response":
return 1, "Invalid response from tool", None
error_message = None
params = None
try:
if isinstance(result, str):
params = json.loads(result)
error_value = 0
except JSONDecodeError:
error_message = "Response parsing error"
error_value = 1
except Exception as e:
error_message = str(e)
error_value = 1
return error_value, error_message, params
def get_prediction_values(params: dict) -> Tuple:
p_yes = float(params.pop("p_yes"))
p_no = float(params.pop("p_no"))
confidence = float(params.pop("confidence"))
info_utility = float(params.pop("info_utility"))
return p_yes, p_no, confidence, info_utility
def _to_content(q: str) -> dict[str, Any]:
"""Convert the given query string to payload content, i.e., add it under a `queries` key and convert it to bytes."""
finalized_query = {
"query": q,
"variables": None,
"extensions": {"headers": None},
}
return finalized_query