arshy's picture
better refresh data
1b657c1
raw
history blame
13.3 kB
import subprocess
import logging
from datetime import datetime
import gradio as gr
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from apscheduler.triggers.cron import CronTrigger
from pytz import utc
from tabs.trades import (
prepare_trades,
get_overall_trades,
get_overall_winning_trades,
plot_trades_by_week,
plot_winning_trades_by_week,
plot_trade_details
)
from tabs.tool_win import (
get_tool_winning_rate,
get_overall_winning_rate,
plot_tool_winnings_overall,
plot_tool_winnings_by_tool
)
from tabs.error import (
get_error_data,
get_error_data_overall,
plot_error_data,
plot_tool_error_data,
plot_week_error_data
)
from tabs.about import about_olas_predict
def update_trades_plots():
global tools_df, trades_df, error_df, error_overall_df, winning_rate_df, winning_rate_overall_df, trades_count_df, trades_winning_rate_df
refresh_data()
updated_trades_by_week_plot = plot_trades_by_week(
trades_df=trades_count_df
)
updated_winning_trades_by_week_plot = plot_winning_trades_by_week(
trades_df=trades_winning_rate_df
)
updated_trade_details_plot = plot_trade_details(
trade_detail="mech calls",
trades_df=trades_df
)
return (
updated_trades_by_week_plot,
updated_winning_trades_by_week_plot,
updated_trade_details_plot
)
def update_tool_winnings_plots():
global tools_df, trades_df, error_df, error_overall_df, winning_rate_df, winning_rate_overall_df, trades_count_df, trades_winning_rate_df
refresh_data()
updated_winning_plot = plot_tool_winnings_overall(
wins_df=winning_rate_overall_df,
winning_selector="win_perc"
)
updated_tool_winnings_by_tool_plot = plot_tool_winnings_by_tool(
wins_df=winning_rate_df,
tool=INC_TOOLS[0]
)
return (
updated_winning_plot,
updated_tool_winnings_by_tool_plot
)
def update_error_plots():
global tools_df, trades_df, error_df, error_overall_df, winning_rate_df, winning_rate_overall_df, trades_count_df, trades_winning_rate_df
refresh_data()
updated_error_overall_plot = plot_error_data(
error_all_df=error_overall_df
)
updated_tool_error_plot = plot_tool_error_data(
error_df=error_df,
tool=INC_TOOLS[0]
)
updated_week_error_plot = plot_week_error_data(
error_df=error_df,
week=choices[-1]
)
return (
updated_error_overall_plot,
updated_tool_error_plot,
updated_week_error_plot
)
def refresh_data():
try:
global tools_df, trades_df, error_df, error_overall_df, winning_rate_df, winning_rate_overall_df, trades_count_df, trades_winning_rate_df
logging.info("Refreshing data...")
tools_df = pd.read_csv("./data/tools.csv", low_memory=False)
trades_df = pd.read_csv("./data/all_trades_profitability.csv")
trades_df = prepare_trades(trades_df)
error_df = get_error_data(tools_df=tools_df, inc_tools=INC_TOOLS)
error_overall_df = get_error_data_overall(error_df=error_df)
winning_rate_df = get_tool_winning_rate(tools_df=tools_df, inc_tools=INC_TOOLS)
winning_rate_overall_df = get_overall_winning_rate(wins_df=winning_rate_df)
trades_count_df = get_overall_trades(trades_df=trades_df)
trades_winning_rate_df = get_overall_winning_trades(trades_df=trades_df)
logging.info("Data refreshed.")
except Exception as e:
logging.error("Failed to refresh data: %s", e)
def pull_refresh_data():
# Run the pull_data.py script and wait for it to finish
try:
result = subprocess.run(["python", "./scripts/pull_data.py"], check=True)
logging.info("Script executed successfully: %s", result)
refresh_data()
except subprocess.CalledProcessError as e:
logging.error("Failed to run script: %s", e)
return # Stop execution if the script fails
refresh_data()
tools_df = pd.read_csv("./data/tools.csv", low_memory=False)
trades_df = pd.read_csv("./data/all_trades_profitability.csv")
trades_df = prepare_trades(trades_df)
demo = gr.Blocks()
INC_TOOLS = [
'prediction-online',
'prediction-offline',
'claude-prediction-online',
'claude-prediction-offline',
'prediction-offline-sme',
'prediction-online-sme',
'prediction-request-rag',
'prediction-request-reasoning',
'prediction-url-cot-claude',
'prediction-request-rag-claude',
'prediction-request-reasoning-claude'
]
error_df = get_error_data(
tools_df=tools_df,
inc_tools=INC_TOOLS
)
error_overall_df = get_error_data_overall(
error_df=error_df
)
winning_rate_df = get_tool_winning_rate(
tools_df=tools_df,
inc_tools=INC_TOOLS
)
winning_rate_overall_df = get_overall_winning_rate(
wins_df=winning_rate_df
)
trades_count_df = get_overall_trades(
trades_df=trades_df
)
trades_winning_rate_df = get_overall_winning_trades(
trades_df=trades_df
)
with demo:
gr.HTML("<h1>Olas Predict Actual Performance</h1>")
gr.Markdown("This app shows the actual performance of Olas Predict tools on the live market.")
with gr.Tabs():
with gr.TabItem("🔥Trades Dashboard"):
with gr.Row():
gr.Markdown("# Plot of number of trades by week")
with gr.Row():
trades_by_week_plot = plot_trades_by_week(
trades_df=trades_count_df
)
with gr.Row():
gr.Markdown("# Plot of winning trades by week")
with gr.Row():
winning_trades_by_week_plot = plot_winning_trades_by_week(
trades_df=trades_winning_rate_df
)
with gr.Row():
gr.Markdown("# Plot of trade details")
with gr.Row():
trade_details_selector = gr.Dropdown(
label="Select a trade",
choices=[
"mech calls",
"collateral amount",
"earnings",
"net earnings",
"ROI"
],
value="mech calls"
)
with gr.Row():
trade_details_plot = plot_trade_details(
trade_detail="mech calls",
trades_df=trades_df
)
def update_trade_details(trade_detail):
return plot_trade_details(
trade_detail=trade_detail,
trades_df=trades_df
)
trade_details_selector.change(
update_trade_details,
inputs=trade_details_selector,
outputs=trade_details_plot
)
with gr.Row():
trade_details_selector
with gr.Row():
trade_details_plot
with gr.Row():
with gr.Column():
refresh_button = gr.Button("Refresh Data")
refresh_button.click(
update_trades_plots,
outputs=[
trades_by_week_plot,
winning_trades_by_week_plot,
trade_details_plot,
]
)
with gr.TabItem("🚀 Tool Winning Dashboard"):
with gr.Row():
gr.Markdown("# Plot showing overall winning rate")
with gr.Row():
winning_selector = gr.Dropdown(
label="Select Metric",
choices=['losses', 'wins', 'total_request', 'win_perc'],
value='win_perc',
)
with gr.Row():
winning_plot = plot_tool_winnings_overall(
wins_df=winning_rate_overall_df,
winning_selector="win_perc"
)
def update_tool_winnings_overall_plot(winning_selector):
return plot_tool_winnings_overall(
wins_df=winning_rate_overall_df,
winning_selector=winning_selector
)
winning_selector.change(
update_tool_winnings_overall_plot,
inputs=winning_selector,
outputs=winning_plot
)
with gr.Row():
winning_selector
with gr.Row():
winning_plot
with gr.Row():
gr.Markdown("# Plot showing winning rate by tool")
with gr.Row():
sel_tool = gr.Dropdown(
label="Select a tool",
choices=INC_TOOLS,
value=INC_TOOLS[0]
)
with gr.Row():
tool_winnings_by_tool_plot = plot_tool_winnings_by_tool(
wins_df=winning_rate_df,
tool=INC_TOOLS[0]
)
def update_tool_winnings_by_tool_plot(tool):
return plot_tool_winnings_by_tool(
wins_df=winning_rate_df,
tool=tool
)
sel_tool.change(
update_tool_winnings_by_tool_plot,
inputs=sel_tool,
outputs=tool_winnings_by_tool_plot
)
with gr.Row():
sel_tool
with gr.Row():
tool_winnings_by_tool_plot
with gr.Row():
refresh_button = gr.Button("Refresh Data")
refresh_button.click(
update_tool_winnings_plots,
outputs=[
winning_plot,
tool_winnings_by_tool_plot
]
)
with gr.TabItem("🏥 Tool Error Dashboard"):
with gr.Row():
gr.Markdown("# Plot showing overall error")
with gr.Row():
error_overall_plot = plot_error_data(
error_all_df=error_overall_df
)
with gr.Row():
gr.Markdown("# Plot showing error by tool")
with gr.Row():
sel_tool = gr.Dropdown(
label="Select a tool",
choices=INC_TOOLS,
value=INC_TOOLS[0]
)
with gr.Row():
tool_error_plot = plot_tool_error_data(
error_df=error_df,
tool=INC_TOOLS[0]
)
def update_tool_error_plot(tool):
return plot_tool_error_data(
error_df=error_df,
tool=tool
)
sel_tool.change(
update_tool_error_plot,
inputs=sel_tool,
outputs=tool_error_plot
)
with gr.Row():
sel_tool
with gr.Row():
tool_error_plot
with gr.Row():
gr.Markdown("# Plot showing error by week")
with gr.Row():
choices = error_overall_df['request_month_year_week'].unique().tolist()
# sort the choices by the latest week to be on the top
choices = sorted(choices)
sel_week = gr.Dropdown(
label="Select a week",
choices=choices,
value=choices[-1]
)
with gr.Row():
week_error_plot = plot_week_error_data(
error_df=error_df,
week=choices[-1]
)
def update_week_error_plot(selected_week):
return plot_week_error_data(
error_df=error_df,
week=selected_week
)
sel_tool.change(update_tool_error_plot, inputs=sel_tool, outputs=tool_error_plot)
sel_week.change(update_week_error_plot, inputs=sel_week, outputs=week_error_plot)
with gr.Row():
sel_tool
with gr.Row():
tool_error_plot
with gr.Row():
sel_week
with gr.Row():
week_error_plot
with gr.Row():
refresh_button = gr.Button("Refresh Data")
refresh_button.click(
update_error_plots,
outputs=[
error_overall_plot,
tool_error_plot,
week_error_plot
]
)
with gr.TabItem("ℹ️ About"):
with gr.Accordion("About Olas Predict"):
gr.Markdown(about_olas_predict)
# Create the scheduler
scheduler = BackgroundScheduler(timezone=utc)
scheduler.add_job(pull_refresh_data, CronTrigger(hour=0, minute=0)) # Runs daily at 12 AM UTC
scheduler.start()
demo.queue(default_concurrency_limit=40).launch()