arshy's picture
initial commit
c892f97
raw
history blame
19.7 kB
# -*- coding: utf-8 -*-
# ------------------------------------------------------------------------------
#
# Copyright 2023 Valory AG
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# ------------------------------------------------------------------------------
import time
import requests
import datetime
import pandas as pd
from collections import defaultdict
from typing import Any, Union
from string import Template
from enum import Enum
from tqdm import tqdm
import numpy as np
from pathlib import Path
IRRELEVANT_TOOLS = [
"openai-text-davinci-002",
"openai-text-davinci-003",
"openai-gpt-3.5-turbo",
"openai-gpt-4",
"stabilityai-stable-diffusion-v1-5",
"stabilityai-stable-diffusion-xl-beta-v2-2-2",
"stabilityai-stable-diffusion-512-v2-1",
"stabilityai-stable-diffusion-768-v2-1",
"deepmind-optimization-strong",
"deepmind-optimization",
]
QUERY_BATCH_SIZE = 1000
DUST_THRESHOLD = 10000000000000
INVALID_ANSWER_HEX = (
"0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff"
)
INVALID_ANSWER = -1
FPMM_CREATOR = "0x89c5cc945dd550bcffb72fe42bff002429f46fec"
DEFAULT_FROM_DATE = "1970-01-01T00:00:00"
DEFAULT_TO_DATE = "2038-01-19T03:14:07"
DEFAULT_FROM_TIMESTAMP = 0
DEFAULT_TO_TIMESTAMP = 2147483647
WXDAI_CONTRACT_ADDRESS = "0xe91D153E0b41518A2Ce8Dd3D7944Fa863463a97d"
DEFAULT_MECH_FEE = 0.01
DUST_THRESHOLD = 10000000000000
SCRIPTS_DIR = Path(__file__).parent
ROOT_DIR = SCRIPTS_DIR.parent
DATA_DIR = ROOT_DIR / "data"
class MarketState(Enum):
"""Market state"""
OPEN = 1
PENDING = 2
FINALIZING = 3
ARBITRATING = 4
CLOSED = 5
def __str__(self) -> str:
"""Prints the market status."""
return self.name.capitalize()
class MarketAttribute(Enum):
"""Attribute"""
NUM_TRADES = "Num_trades"
WINNER_TRADES = "Winner_trades"
NUM_REDEEMED = "Num_redeemed"
INVESTMENT = "Investment"
FEES = "Fees"
MECH_CALLS = "Mech_calls"
MECH_FEES = "Mech_fees"
EARNINGS = "Earnings"
NET_EARNINGS = "Net_earnings"
REDEMPTIONS = "Redemptions"
ROI = "ROI"
def __str__(self) -> str:
"""Prints the attribute."""
return self.value
def __repr__(self) -> str:
"""Prints the attribute representation."""
return self.name
@staticmethod
def argparse(s: str) -> "MarketAttribute":
"""Performs string conversion to MarketAttribute."""
try:
return MarketAttribute[s.upper()]
except KeyError as e:
raise ValueError(f"Invalid MarketAttribute: {s}") from e
ALL_TRADES_STATS_DF_COLS = [
"trader_address",
"trade_id",
"creation_timestamp",
"title",
"market_status",
"collateral_amount",
"outcome_index",
"trade_fee_amount",
"outcomes_tokens_traded",
"current_answer",
"is_invalid",
"winning_trade",
"earnings",
"redeemed",
"redeemed_amount",
"num_mech_calls",
"mech_fee_amount",
"net_earnings",
"roi",
]
SUMMARY_STATS_DF_COLS = [
"trader_address",
"num_trades",
"num_winning_trades",
"num_redeemed",
"total_investment",
"total_trade_fees",
"num_mech_calls",
"total_mech_fees",
"total_earnings",
"total_redeemed_amount",
"total_net_earnings",
"total_net_earnings_wo_mech_fees",
"total_roi",
"total_roi_wo_mech_fees",
"mean_mech_calls_per_trade",
"mean_mech_fee_amount_per_trade",
]
headers = {
"Accept": "application/json, multipart/mixed",
"Content-Type": "application/json",
}
omen_xdai_trades_query = Template(
"""
{
fpmmTrades(
where: {
type: Buy,
fpmm_: {
creator: "${fpmm_creator}"
creationTimestamp_gte: "${fpmm_creationTimestamp_gte}",
creationTimestamp_lt: "${fpmm_creationTimestamp_lte}"
},
creationTimestamp_gte: "${creationTimestamp_gte}",
creationTimestamp_lte: "${creationTimestamp_lte}"
id_gt: "${id_gt}"
}
first: ${first}
orderBy: id
orderDirection: asc
) {
id
title
collateralToken
outcomeTokenMarginalPrice
oldOutcomeTokenMarginalPrice
type
creator {
id
}
creationTimestamp
collateralAmount
collateralAmountUSD
feeAmount
outcomeIndex
outcomeTokensTraded
transactionHash
fpmm {
id
outcomes
title
answerFinalizedTimestamp
currentAnswer
isPendingArbitration
arbitrationOccurred
openingTimestamp
condition {
id
}
}
}
}
"""
)
conditional_tokens_gc_user_query = Template(
"""
{
user(id: "${id}") {
userPositions(
first: ${first}
where: {
id_gt: "${userPositions_id_gt}"
}
orderBy: id
) {
balance
id
position {
id
conditionIds
}
totalBalance
wrappedBalance
}
}
}
"""
)
def _to_content(q: str) -> dict[str, Any]:
"""Convert the given query string to payload content, i.e., add it under a `queries` key and convert it to bytes."""
finalized_query = {
"query": q,
"variables": None,
"extensions": {"headers": None},
}
return finalized_query
def _query_omen_xdai_subgraph(
from_timestamp: float,
to_timestamp: float,
fpmm_from_timestamp: float,
fpmm_to_timestamp: float,
) -> dict[str, Any]:
"""Query the subgraph."""
url = "https://api.thegraph.com/subgraphs/name/protofire/omen-xdai"
grouped_results = defaultdict(list)
id_gt = ""
while True:
query = omen_xdai_trades_query.substitute(
fpmm_creator=FPMM_CREATOR.lower(),
creationTimestamp_gte=int(from_timestamp),
creationTimestamp_lte=int(to_timestamp),
fpmm_creationTimestamp_gte=int(fpmm_from_timestamp),
fpmm_creationTimestamp_lte=int(fpmm_to_timestamp),
first=QUERY_BATCH_SIZE,
id_gt=id_gt,
)
content_json = _to_content(query)
res = requests.post(url, headers=headers, json=content_json)
result_json = res.json()
user_trades = result_json.get("data", {}).get("fpmmTrades", [])
if not user_trades:
break
for trade in user_trades:
fpmm_id = trade.get("fpmm", {}).get("id")
grouped_results[fpmm_id].append(trade)
id_gt = user_trades[len(user_trades) - 1]["id"]
all_results = {
"data": {
"fpmmTrades": [
trade
for trades_list in grouped_results.values()
for trade in trades_list
]
}
}
return all_results
def _query_conditional_tokens_gc_subgraph(creator: str) -> dict[str, Any]:
"""Query the subgraph."""
url = "https://api.thegraph.com/subgraphs/name/gnosis/conditional-tokens-gc"
all_results: dict[str, Any] = {"data": {"user": {"userPositions": []}}}
userPositions_id_gt = ""
while True:
query = conditional_tokens_gc_user_query.substitute(
id=creator.lower(),
first=QUERY_BATCH_SIZE,
userPositions_id_gt=userPositions_id_gt,
)
content_json = {"query": query}
res = requests.post(url, headers=headers, json=content_json)
result_json = res.json()
user_data = result_json.get("data", {}).get("user", {})
if not user_data:
break
user_positions = user_data.get("userPositions", [])
if user_positions:
all_results["data"]["user"]["userPositions"].extend(user_positions)
userPositions_id_gt = user_positions[len(user_positions) - 1]["id"]
else:
break
if len(all_results["data"]["user"]["userPositions"]) == 0:
return {"data": {"user": None}}
return all_results
def convert_hex_to_int(x: Union[str, float]) -> Union[int, float]:
"""Convert hex to int"""
if isinstance(x, float):
return np.nan
elif isinstance(x, str):
if x == INVALID_ANSWER_HEX:
return -1
else:
return int(x, 16)
def wei_to_unit(wei: int) -> float:
"""Converts wei to currency unit."""
return wei / 10**18
def _is_redeemed(user_json: dict[str, Any], fpmmTrade: dict[str, Any]) -> bool:
"""Returns whether the user has redeemed the position."""
user_positions = user_json["data"]["user"]["userPositions"]
outcomes_tokens_traded = int(fpmmTrade["outcomeTokensTraded"])
condition_id = fpmmTrade["fpmm.condition.id"]
for position in user_positions:
position_condition_ids = position["position"]["conditionIds"]
balance = int(position["balance"])
if condition_id in position_condition_ids:
if balance == 0:
return True
# return early
return False
return False
def create_fpmmTrades(rpc: str):
"""Create fpmmTrades for all trades."""
trades_json = _query_omen_xdai_subgraph(
from_timestamp=DEFAULT_FROM_TIMESTAMP,
to_timestamp=DEFAULT_TO_TIMESTAMP,
fpmm_from_timestamp=DEFAULT_FROM_TIMESTAMP,
fpmm_to_timestamp=DEFAULT_TO_TIMESTAMP,
)
# convert to dataframe
df = pd.DataFrame(trades_json["data"]["fpmmTrades"])
# convert creator to address
df["creator"] = df["creator"].apply(lambda x: x["id"])
# normalize fpmm column
fpmm = pd.json_normalize(df["fpmm"])
fpmm.columns = [f"fpmm.{col}" for col in fpmm.columns]
df = pd.concat([df, fpmm], axis=1)
# drop fpmm column
df.drop(["fpmm"], axis=1, inplace=True)
# change creator to creator_address
df.rename(columns={"creator": "trader_address"}, inplace=True)
# save to csv
df.to_csv(DATA_DIR / "fpmmTrades.csv", index=False)
return df
def prepare_profitalibity_data(rpc: str):
"""Prepare data for profitalibity analysis."""
# Check if tools.py is in the same directory
try:
# load tools.csv
tools = pd.read_csv(DATA_DIR / "tools.csv")
# make sure creator_address is in the columns
assert "trader_address" in tools.columns, "trader_address column not found"
# lowercase and strip creator_address
tools["trader_address"] = tools["trader_address"].str.lower().str.strip()
# drop duplicates
tools.drop_duplicates(inplace=True)
print("tools.csv loaded")
except FileNotFoundError:
print("tools.csv not found. Please run tools.py first.")
return
# Check if fpmmTrades.csv is in the same directory
try:
# load fpmmTrades.csv
fpmmTrades = pd.read_csv(DATA_DIR / "fpmmTrades.csv")
print("fpmmTrades.csv loaded")
except FileNotFoundError:
print("fpmmTrades.csv not found. Creating fpmmTrades.csv...")
fpmmTrades = create_fpmmTrades(rpc)
fpmmTrades.to_csv(DATA_DIR / "fpmmTrades.csv", index=False)
fpmmTrades = pd.read_csv(DATA_DIR / "fpmmTrades.csv")
# make sure trader_address is in the columns
assert "trader_address" in fpmmTrades.columns, "trader_address column not found"
# lowercase and strip creator_address
fpmmTrades["trader_address"] = fpmmTrades["trader_address"].str.lower().str.strip()
return fpmmTrades, tools
def determine_market_status(trade, current_answer):
"""Determine the market status of a trade."""
if current_answer is np.nan and time.time() >= trade["fpmm.openingTimestamp"]:
return MarketState.PENDING
elif current_answer == np.nan:
return MarketState.OPEN
elif trade["fpmm.isPendingArbitration"]:
return MarketState.ARBITRATING
elif time.time() < trade["fpmm.answerFinalizedTimestamp"]:
return MarketState.FINALIZING
return MarketState.CLOSED
def analyse_trader(
trader_address: str, fpmmTrades: pd.DataFrame, tools: pd.DataFrame
) -> pd.DataFrame:
"""Analyse a trader's trades"""
# Filter trades and tools for the given trader
trades = fpmmTrades[fpmmTrades["trader_address"] == trader_address]
tools_usage = tools[tools["trader_address"] == trader_address]
# Prepare the DataFrame
trades_df = pd.DataFrame(columns=ALL_TRADES_STATS_DF_COLS)
if trades.empty:
return trades_df
# Fetch user's conditional tokens gc graph
try:
user_json = _query_conditional_tokens_gc_subgraph(trader_address)
except Exception as e:
print(f"Error fetching user data: {e}")
return trades_df
# Iterate over the trades
for i, trade in tqdm(trades.iterrows(), total=len(trades), desc="Analysing trades"):
try:
# Parsing and computing shared values
creation_timestamp_utc = datetime.datetime.fromtimestamp(
trade["creationTimestamp"], tz=datetime.timezone.utc
)
collateral_amount = wei_to_unit(float(trade["collateralAmount"]))
fee_amount = wei_to_unit(float(trade["feeAmount"]))
outcome_tokens_traded = wei_to_unit(float(trade["outcomeTokensTraded"]))
earnings, winner_trade = (0, False)
redemption = _is_redeemed(user_json, trade)
current_answer = trade["fpmm.currentAnswer"]
# Determine market status
market_status = determine_market_status(trade, current_answer)
# Skip non-closed markets
if market_status != MarketState.CLOSED:
print(
f"Skipping trade {i} because market is not closed. Market Status: {market_status}"
)
continue
current_answer = convert_hex_to_int(current_answer)
# Compute invalidity
is_invalid = current_answer == INVALID_ANSWER
# Compute earnings and winner trade status
if is_invalid:
earnings = collateral_amount
winner_trade = False
elif trade["outcomeIndex"] == current_answer:
earnings = outcome_tokens_traded
winner_trade = True
# Compute mech calls
num_mech_calls = (
tools_usage["prompt_request"].apply(lambda x: trade["title"] in x).sum()
)
net_earnings = (
earnings
- fee_amount
- (num_mech_calls * DEFAULT_MECH_FEE)
- collateral_amount
)
# Assign values to DataFrame
trades_df.loc[i] = {
"trader_address": trader_address,
"trade_id": trade["id"],
"market_status": market_status.name,
"creation_timestamp": creation_timestamp_utc,
"title": trade["title"],
"collateral_amount": collateral_amount,
"outcome_index": trade["outcomeIndex"],
"trade_fee_amount": fee_amount,
"outcomes_tokens_traded": outcome_tokens_traded,
"current_answer": current_answer,
"is_invalid": is_invalid,
"winning_trade": winner_trade,
"earnings": earnings,
"redeemed": redemption,
"redeemed_amount": earnings if redemption else 0,
"num_mech_calls": num_mech_calls,
"mech_fee_amount": num_mech_calls * DEFAULT_MECH_FEE,
"net_earnings": net_earnings,
"roi": net_earnings / collateral_amount,
}
except Exception as e:
print(f"Error processing trade {i}: {e}")
continue
return trades_df
def analyse_all_traders(trades: pd.DataFrame, tools: pd.DataFrame) -> pd.DataFrame:
"""Analyse all creators."""
all_traders = []
for trader in tqdm(
trades["trader_address"].unique(),
total=len(trades["trader_address"].unique()),
desc="Analysing creators",
):
all_traders.append(analyse_trader(trader, trades, tools))
# concat all creators
all_creators_df = pd.concat(all_traders)
return all_creators_df
def summary_analyse(df):
"""Summarise profitability analysis."""
# Ensure DataFrame is not empty
if df.empty:
return pd.DataFrame(columns=SUMMARY_STATS_DF_COLS)
# Group by trader_address
grouped = df.groupby("trader_address")
# Create summary DataFrame
summary_df = grouped.agg(
num_trades=("trader_address", "size"),
num_winning_trades=("winning_trade", lambda x: float((x).sum())),
num_redeemed=("redeemed", lambda x: float(x.sum())),
total_investment=("collateral_amount", "sum"),
total_trade_fees=("trade_fee_amount", "sum"),
num_mech_calls=("num_mech_calls", "sum"),
total_mech_fees=("mech_fee_amount", "sum"),
total_earnings=("earnings", "sum"),
total_redeemed_amount=("redeemed_amount", "sum"),
total_net_earnings=("net_earnings", "sum"),
)
# Calculating additional columns
summary_df["total_roi"] = (
summary_df["total_net_earnings"] / summary_df["total_investment"]
)
summary_df["mean_mech_calls_per_trade"] = (
summary_df["num_mech_calls"] / summary_df["num_trades"]
)
summary_df["mean_mech_fee_amount_per_trade"] = (
summary_df["total_mech_fees"] / summary_df["num_trades"]
)
summary_df["total_net_earnings_wo_mech_fees"] = (
summary_df["total_net_earnings"] + summary_df["total_mech_fees"]
)
summary_df["total_roi_wo_mech_fees"] = (
summary_df["total_net_earnings_wo_mech_fees"] / summary_df["total_investment"]
)
# Resetting index to include trader_address
summary_df.reset_index(inplace=True)
return summary_df
def run_profitability_analysis(rpc):
"""Create all trades analysis."""
# load dfs from csv for analysis
print("Preparing data...")
fpmmTrades, tools = prepare_profitalibity_data(rpc)
# all trades profitability df
print("Analysing trades...")
all_trades_df = analyse_all_traders(fpmmTrades, tools)
# summarize profitability df
print("Summarising trades...")
summary_df = summary_analyse(all_trades_df)
# save to csv
all_trades_df.to_csv(DATA_DIR / "all_trades_profitability.csv", index=False)
summary_df.to_csv(DATA_DIR / "summary_profitability.csv", index=False)
print("Done!")
return all_trades_df, summary_df
if __name__ == "__main__":
rpc = "https://lb.nodies.app/v1/406d8dcc043f4cb3959ed7d6673d311a"
run_profitability_analysis(rpc)