Spaces:
Sleeping
Sleeping
import json | |
import mimetypes | |
import os | |
import sys | |
import tempfile | |
import gradio as gr | |
import requests | |
sys.path.insert(0, os.path.dirname(__file__)) | |
import schemdraw | |
from frontend.gradio_agentchatbot.agentchatbot import AgentChatbot | |
from frontend.gradio_agentchatbot.utils import ChatFileMessage, ChatMessage, ThoughtMetadata | |
from lagent.schema import AgentStatusCode | |
from schemdraw import flow | |
import os | |
os.system("pip show starlette") | |
# os.system("pip install -r requirements.txt") | |
os.system("pip install tenacity") | |
os.system("python -m mindsearch.app --lang en --model_format internlm_silicon --search_engine DuckDuckGoSearch &") | |
print('MindSearch is running on http://') | |
PLANNER_HISTORY = [] | |
SEARCHER_HISTORY = [] | |
def create_search_graph(adjacency_list: dict): | |
import matplotlib.pyplot as plt | |
plt.rcParams["font.sans-serif"] = ["SimHei"] | |
with schemdraw.Drawing(fontsize=10, unit=1) as graph: | |
node_pos, nodes, edges = {}, {}, [] | |
if "root" in adjacency_list: | |
queue, layer, response_level = ["root"], 0, 0 | |
while queue: | |
layer_len = len(queue) | |
for i in range(layer_len): | |
node_name = queue.pop(0) | |
node_pos[node_name] = (layer * 5, -i * 3) | |
for item in adjacency_list[node_name]: | |
if item["name"] == "response": | |
response_level = max(response_level, (layer + 1) * 5) | |
else: | |
queue.append(item["name"]) | |
edges.append((node_name, item["name"])) | |
layer += 1 | |
for node_name, (x, y) in node_pos.items(): | |
if node_name == "root": | |
node = flow.Terminal().label(node_name).at((x, y)).color("pink") | |
else: | |
node = flow.RoundBox(w=3.5, h=1.75).label(node_name).at((x, y)).color("teal") | |
nodes[node_name] = node | |
if response_level: | |
response_node = ( | |
flow.Terminal().label("response").at((response_level, 0)).color("orange") | |
) | |
nodes["response"] = response_node | |
for start, end in edges: | |
flow.Arc3(arrow="->").linestyle("--" if end == "response" else "-").at( | |
nodes[start].E | |
).to(nodes[end].W).color("grey" if end == "response" else "lightblue") | |
return graph | |
def draw_search_graph(adjacency_list: dict, suffix=".png", dpi=360) -> str: | |
g = create_search_graph(adjacency_list) | |
path = tempfile.mktemp(suffix=suffix) | |
g.save(path, dpi=dpi) | |
return path | |
def rst_mem(): | |
"""Reset the chatbot memory.""" | |
if PLANNER_HISTORY: | |
PLANNER_HISTORY.clear() | |
return [], [], 0 | |
def format_response(gr_history, message, response, idx=-1): | |
if idx < 0: | |
idx = len(gr_history) + idx | |
if message["stream_state"] == AgentStatusCode.STREAM_ING: | |
gr_history[idx].content = response | |
elif message["stream_state"] == AgentStatusCode.CODING: | |
if gr_history[idx].thought_metadata.tool_name is None: | |
gr_history[idx].content = gr_history[idx].content.split("<|action_start|>")[0] | |
gr_history.insert( | |
idx + 1, | |
ChatMessage( | |
role="assistant", | |
content=response, | |
thought_metadata=ThoughtMetadata(tool_name="π₯οΈ Code Interpreter"), | |
), | |
) | |
else: | |
gr_history[idx].content = response | |
elif message["stream_state"] == AgentStatusCode.PLUGIN_START: | |
if isinstance(response, dict): | |
response = json.dumps(response, ensure_ascii=False, indent=4) | |
if gr_history[idx].thought_metadata.tool_name is None: | |
gr_history[idx].content = gr_history[idx].content.split("<|action_start|>")[0] | |
gr_history.insert( | |
idx + 1, | |
ChatMessage( | |
role="assistant", | |
content="```json\n" + response, | |
thought_metadata=ThoughtMetadata(tool_name="π Web Browser"), | |
), | |
) | |
else: | |
gr_history[idx].content = "```json\n" + response | |
elif message["stream_state"] == AgentStatusCode.PLUGIN_END and isinstance(response, dict): | |
gr_history[idx].content = ( | |
f"```json\n{json.dumps(response, ensure_ascii=False, indent=4)}\n```" | |
) | |
elif message["stream_state"] in [AgentStatusCode.CODE_RETURN, AgentStatusCode.PLUGIN_RETURN]: | |
try: | |
content = json.loads(message["content"]) | |
except json.decoder.JSONDecodeError: | |
content = message["content"] | |
if gr_history[idx].thought_metadata.tool_name: | |
gr_history.insert( | |
idx + 1, | |
ChatMessage( | |
role="assistant", | |
content=( | |
content | |
if isinstance(content, str) | |
else f"\n```json\n{json.dumps(content, ensure_ascii=False, indent=4)}\n```\n" | |
), | |
thought_metadata=ThoughtMetadata(tool_name="Execution"), | |
), | |
) | |
gr_history.insert(idx + 2, ChatMessage(role="assistant", content="")) | |
def predict(history_planner, history_searcher, node_cnt): | |
def streaming(raw_response): | |
for chunk in raw_response.iter_lines( | |
chunk_size=8192, decode_unicode=False, delimiter=b"\n" | |
): | |
if chunk: | |
decoded = chunk.decode("utf-8") | |
if decoded == "\r": | |
continue | |
if decoded[:6] == "data: ": | |
decoded = decoded[6:] | |
elif decoded.startswith(": ping - "): | |
continue | |
response = json.loads(decoded) | |
yield ( | |
response["current_node"], | |
( | |
response["response"]["formatted"]["node"][response["current_node"]] | |
if response["current_node"] | |
else response["response"] | |
), | |
response["response"]["formatted"]["adjacency_list"], | |
) | |
global PLANNER_HISTORY | |
PLANNER_HISTORY.extend(history_planner[-3:]) | |
search_graph_msg = history_planner[-1] | |
url = "http://localhost:8002/solve" | |
data = {"inputs": PLANNER_HISTORY[-3].content} | |
raw_response = requests.post(url, json=data, timeout=60, stream=True) | |
node_id2msg_idx = {} | |
for resp in streaming(raw_response): | |
node_name, agent_message, adjacency_list = resp | |
dedup_nodes = set(adjacency_list) | { | |
val["name"] for vals in adjacency_list.values() for val in vals | |
} | |
if dedup_nodes and len(dedup_nodes) != node_cnt: | |
node_cnt = len(dedup_nodes) | |
graph_path = draw_search_graph(adjacency_list) | |
search_graph_msg.file.path = graph_path | |
search_graph_msg.file.mime_type = mimetypes.guess_type(graph_path)[0] | |
if node_name: | |
if node_name in ["root", "response"]: | |
continue | |
node_id = f'γ{node_name}γ{agent_message["content"]}' | |
agent_message = agent_message["response"] | |
response = ( | |
agent_message["formatted"]["action"] | |
if agent_message["stream_state"] | |
in [AgentStatusCode.PLUGIN_START, AgentStatusCode.PLUGIN_END] | |
else agent_message["formatted"] and agent_message["formatted"].get("thought") | |
) | |
if node_id not in node_id2msg_idx: | |
node_id2msg_idx[node_id] = len(history_searcher) + 1 | |
history_searcher.append(ChatMessage(role="user", content=node_id)) | |
history_searcher.append(ChatMessage(role="assistant", content="")) | |
offset = len(history_searcher) | |
format_response(history_searcher, agent_message, response, node_id2msg_idx[node_id]) | |
flag, incr = False, len(history_searcher) - offset | |
for key, value in node_id2msg_idx.items(): | |
if flag or key == node_id: | |
node_id2msg_idx[key] = value + incr | |
if not flag: | |
flag = True | |
yield history_planner, history_searcher, node_cnt | |
else: | |
response = ( | |
agent_message["formatted"]["action"] | |
if agent_message["stream_state"] | |
in [AgentStatusCode.CODING, AgentStatusCode.CODE_END] | |
else agent_message["formatted"] and agent_message["formatted"].get("thought") | |
) | |
format_response(history_planner, agent_message, response, -2) | |
if agent_message["stream_state"] == AgentStatusCode.END: | |
PLANNER_HISTORY = history_planner | |
yield history_planner, history_searcher, node_cnt | |
return history_planner, history_searcher, node_cnt | |
with gr.Blocks(css=os.path.join(os.path.dirname(__file__), "css", "gradio_front.css")) as demo: | |
with gr.Column(elem_classes="chat-box"): | |
gr.HTML("""<h1 align="center">MindSearch Gradio Demo</h1>""") | |
gr.HTML( | |
"""<p style="text-align: center; font-family: Arial, sans-serif;"> | |
MindSearch is an open-source AI Search Engine Framework with Perplexity.ai Pro performance. | |
You can deploy your own Perplexity.ai-style search engine using either | |
closed-source LLMs (GPT, Claude) | |
or open-source LLMs (InternLM2.5-7b-chat).</p> """ | |
) | |
gr.HTML( | |
""" | |
<div style="text-align: center; font-size: 16px;"> | |
<a href="https://github.com/InternLM/MindSearch" style="margin-right: 15px; | |
text-decoration: none; color: #4A90E2;" target="_blank">π GitHub</a> | |
<a href="https://arxiv.org/abs/2407.20183" style="margin-right: 15px; | |
text-decoration: none; color: #4A90E2;" target="_blank">π Arxiv</a> | |
<a href="https://huggingface.co/papers/2407.20183" style="margin-right: | |
15px; text-decoration: none; color: #4A90E2;" target="_blank">π Hugging Face Papers</a> | |
<a href="https://huggingface.co/spaces/internlm/MindSearch" | |
style="text-decoration: none; color: #4A90E2;" target="_blank">π€ Hugging Face Demo</a> | |
</div>""" | |
) | |
gr.HTML( | |
""" | |
<h1 align='right'><img | |
src= | |
'https://raw.githubusercontent.com/InternLM/MindSearch/98fd84d566fe9e3adc5028727f72f2944098fd05/assets/logo.svg' | |
alt='MindSearch Logo1' class="logo" width="200"></h1> """ | |
) | |
node_count = gr.State(0) | |
with gr.Row(): | |
planner = AgentChatbot( | |
label="planner", | |
height=600, | |
show_label=True, | |
show_copy_button=True, | |
bubble_full_width=False, | |
render_markdown=True, | |
elem_classes="chatbot-container", | |
) | |
searcher = AgentChatbot( | |
label="searcher", | |
height=600, | |
show_label=True, | |
show_copy_button=True, | |
bubble_full_width=False, | |
render_markdown=True, | |
elem_classes="chatbot-container", | |
) | |
with gr.Row(elem_classes="chat-box"): | |
# Text input area | |
user_input = gr.Textbox( | |
show_label=False, | |
placeholder="Type your message...", | |
lines=1, | |
container=False, | |
elem_classes="editor", | |
scale=4, | |
) | |
# Buttons (now in the same Row) | |
submitBtn = gr.Button("submit", variant="primary", elem_classes="toolbarButton", scale=1) | |
clearBtn = gr.Button("clear", variant="secondary", elem_classes="toolbarButton", scale=1) | |
with gr.Row(elem_classes="examples-container"): | |
examples_component = gr.Examples( | |
[ | |
["Find legal precedents in contract law."], | |
["What are the top 10 e-commerce websites?"], | |
["Generate a report on global climate change."], | |
], | |
inputs=user_input, | |
label="Try these examples:", | |
) | |
def user(query, history): | |
history.append(ChatMessage(role="user", content=query)) | |
history.append(ChatMessage(role="assistant", content="")) | |
graph_path = draw_search_graph({"root": []}) | |
history.append( | |
ChatFileMessage( | |
role="assistant", | |
file=gr.FileData(path=graph_path, mime_type=mimetypes.guess_type(graph_path)[0]), | |
) | |
) | |
return "", history | |
submitBtn.click(user, [user_input, planner], [user_input, planner], queue=False).then( | |
predict, | |
[planner, searcher, node_count], | |
[planner, searcher, node_count], | |
) | |
clearBtn.click(rst_mem, None, [planner, searcher, node_count], queue=False) | |
demo.queue() | |
demo.launch() | |
# demo.launch(server_name="0.0.0.0", inbrowser=True, share=False) | |