Spaces:
Runtime error
Runtime error
license: apache-2.0 | |
language: | |
- en | |
tags: | |
- ctranslate2 | |
- flan-alpaca-gpt4-xl | |
- quantization | |
- int8 | |
# Model Card for Flan-Alpaca-GPT4-XL Q8 | |
The model is quantized version of the [declare-lab/flan-alpaca-gpt4-xl](https://huggingface.co/declare-lab/flan-alpaca-gpt4-xl) with int8 quantization. | |
## Model Details | |
### Model Description | |
The model being quantized using [CTranslate2](https://opennmt.net/CTranslate2/) with the following command: | |
``` | |
ct2-transformers-converter --model declare-lab/flan-alpaca-gpt4-xl --output_dir declare-lab/flan-alpaca-gpt4-xl-ct2 --copy_files generation_config.json tokenizer.json tokenizer_config.json special_tokens_map.json spiece.model --quantization int8 --force --low_cpu_mem_usage | |
``` | |
If you want to perform the quantization yourself, you need to install the following dependencies: | |
``` | |
pip install -qU ctranslate2 transformers[torch] sentencepiece accelerate | |
``` | |
- **Shared by:** Lim Chee Kin | |
- **License:** Apache 2.0 | |
## How to Get Started with the Model | |
Use the code below to get started with the model. | |
```python | |
import ctranslate2 | |
import transformers | |
translator = ctranslate2.Translator("limcheekin/flan-alpaca-gpt4-xl-ct2") | |
tokenizer = transformers.AutoTokenizer.from_pretrained("limcheekin/flan-alpaca-gpt4-xl-ct2") | |
input_text = "translate English to German: The house is wonderful." | |
input_tokens = tokenizer.convert_ids_to_tokens(tokenizer.encode(input_text)) | |
results = translator.translate_batch([input_tokens]) | |
output_tokens = results[0].hypotheses[0] | |
output_text = tokenizer.decode(tokenizer.convert_tokens_to_ids(output_tokens)) | |
print(output_text) | |
``` | |
The code is taken from https://opennmt.net/CTranslate2/guides/transformers.html#t5. | |
The key method of the code above is `translate_batch`, you can find out [its supported parameters here](https://opennmt.net/CTranslate2/python/ctranslate2.Translator.html#ctranslate2.Translator.translate_batch). | |