Spaces:
Running
on
T4
Running
on
T4
File size: 13,671 Bytes
8ce4d25 2034346 e0b54fb b7897bb 94df778 8dc2c8a 2034346 e0b54fb 2034346 9e9d8e8 2034346 9e9d8e8 2034346 9e9d8e8 2034346 9e9d8e8 2034346 9e9d8e8 2034346 9e9d8e8 2034346 9e9d8e8 8ce4d25 2034346 a0b3781 3b2eca4 2034346 b7897bb 3b2eca4 8ce4d25 b7897bb b08a991 b7897bb 1f02318 8dc2c8a 8ce4d25 b7897bb 8ce4d25 b7897bb b08a991 b7897bb b08a991 8ce4d25 8dc2c8a be59b6e b7897bb e0b54fb 2034346 e0b54fb b7897bb 2034346 b7897bb 9e9d8e8 8ce4d25 1f02318 8dc2c8a 1f02318 e0b54fb 9e9d8e8 8ce4d25 b62467a 8ce4d25 06120a1 2034346 8ce4d25 fa270d9 ece4c70 fa270d9 ece4c70 8ce4d25 368feb2 8dc2c8a 8ce4d25 2034346 8ce4d25 b7897bb 8ce4d25 2034346 b7897bb 8ce4d25 b7897bb 8ce4d25 300f274 2034346 8ce4d25 b7897bb 2034346 e0b54fb b7897bb 8ce4d25 9e9d8e8 8ce4d25 9e9d8e8 8dc2c8a 300f274 8dc2c8a 2034346 8dc2c8a 8ce4d25 be59b6e 8ce4d25 a0b3781 be59b6e 9e9d8e8 fa270d9 be59b6e 8dc2c8a 4775a9f 2034346 f612eb3 2034346 fa270d9 2034346 9e9d8e8 fa270d9 2034346 8ce4d25 2034346 4775a9f 8ce4d25 4775a9f be59b6e e0b54fb 8dc2c8a e0b54fb 9e9d8e8 2034346 9e9d8e8 be59b6e 9e9d8e8 fa270d9 be59b6e 2034346 9e9d8e8 8dc2c8a 9e9d8e8 2034346 9e9d8e8 fa270d9 9e9d8e8 8dc2c8a 9e9d8e8 be59b6e 8ce4d25 3b2eca4 9e9d8e8 3b2eca4 9e9d8e8 8dc2c8a 9e9d8e8 4775a9f 3b2eca4 fa270d9 3b2eca4 8ce4d25 b7897bb 2034346 b7897bb 2034346 9e9d8e8 2034346 9e9d8e8 8dc2c8a 9e9d8e8 b7897bb 9e9d8e8 b7897bb b08a991 2034346 b08a991 2034346 8dc2c8a 9e9d8e8 e0b54fb 9e9d8e8 2034346 8dc2c8a 9e9d8e8 2034346 8dc2c8a 9e9d8e8 295263a 8dc2c8a 9e9d8e8 8dc2c8a 2034346 9e9d8e8 2034346 e0b54fb 2034346 e0b54fb b7897bb e0b54fb b7897bb 2034346 b7897bb 2034346 b7897bb 8ce4d25 b7897bb 8ce4d25 94df778 8dc2c8a 94df778 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 |
import asyncio
import base64
import os
import time
import uuid
import logging
import sys
from concurrent.futures import ThreadPoolExecutor
from pathlib import Path
import google.generativeai as genai
from fastcore.parallel import threaded
from fasthtml.common import (
Aside,
Div,
FileResponse,
HighlightJS,
Img,
JSONResponse,
Link,
Main,
P,
RedirectResponse,
Script,
StreamingResponse,
fast_app,
serve,
)
from PIL import Image
from shad4fast import ShadHead
from vespa.application import Vespa
from backend.colpali import SimMapGenerator
from backend.vespa_app import VespaQueryClient
from frontend.app import (
AboutThisDemo,
ChatResult,
Home,
Search,
SearchBox,
SearchResult,
SimMapButtonPoll,
SimMapButtonReady,
)
from frontend.layout import Layout
highlight_js_theme_link = Link(id="highlight-theme", rel="stylesheet", href="")
highlight_js_theme = Script(src="/static/js/highlightjs-theme.js")
highlight_js = HighlightJS(
langs=["python", "javascript", "java", "json", "xml"],
dark="github-dark",
light="github",
)
overlayscrollbars_link = Link(
rel="stylesheet",
href="https://cdnjs.cloudflare.com/ajax/libs/overlayscrollbars/2.10.0/styles/overlayscrollbars.min.css",
type="text/css",
)
overlayscrollbars_js = Script(
src="https://cdnjs.cloudflare.com/ajax/libs/overlayscrollbars/2.10.0/browser/overlayscrollbars.browser.es5.min.js"
)
awesomplete_link = Link(
rel="stylesheet",
href="https://cdnjs.cloudflare.com/ajax/libs/awesomplete/1.1.7/awesomplete.min.css",
type="text/css",
)
awesomplete_js = Script(
src="https://cdnjs.cloudflare.com/ajax/libs/awesomplete/1.1.7/awesomplete.min.js"
)
sselink = Script(src="https://unpkg.com/htmx-ext-sse@2.2.1/sse.js")
# Get log level from environment variable, default to INFO
LOG_LEVEL = os.getenv("LOG_LEVEL", "INFO").upper()
# Configure logger
logger = logging.getLogger("vespa_app")
handler = logging.StreamHandler(sys.stdout)
handler.setFormatter(
logging.Formatter(
"%(levelname)s: \t %(asctime)s \t %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
)
)
logger.addHandler(handler)
logger.setLevel(getattr(logging, LOG_LEVEL))
app, rt = fast_app(
htmlkw={"cls": "grid h-full"},
pico=False,
hdrs=(
highlight_js,
highlight_js_theme_link,
highlight_js_theme,
overlayscrollbars_link,
overlayscrollbars_js,
awesomplete_link,
awesomplete_js,
sselink,
ShadHead(tw_cdn=False, theme_handle=True),
),
)
vespa_app: Vespa = VespaQueryClient(logger=logger)
thread_pool = ThreadPoolExecutor()
# Gemini config
genai.configure(api_key=os.getenv("GEMINI_API_KEY"))
GEMINI_SYSTEM_PROMPT = """If the user query is a question, try your best to answer it based on the provided images.
If the user query can not be interpreted as a question, or if the answer to the query can not be inferred from the images,
answer with the exact phrase "I am sorry, I can't find enough relevant information on these pages to answer your question.".
Your response should be HTML formatted, but only simple tags, such as <b>. <p>, <i>, <br> <ul> and <li> are allowed. No HTML tables.
This means that newlines will be replaced with <br> tags, bold text will be enclosed in <b> tags, and so on.
Do NOT include backticks (`) in your response. Only simple HTML tags and text.
"""
gemini_model = genai.GenerativeModel(
"gemini-1.5-flash-8b", system_instruction=GEMINI_SYSTEM_PROMPT
)
STATIC_DIR = Path("static")
IMG_DIR = STATIC_DIR / "full_images"
SIM_MAP_DIR = STATIC_DIR / "sim_maps"
os.makedirs(IMG_DIR, exist_ok=True)
os.makedirs(SIM_MAP_DIR, exist_ok=True)
@app.on_event("startup")
def load_model_on_startup():
app.sim_map_generator = SimMapGenerator(logger=logger)
return
@app.on_event("startup")
async def keepalive():
asyncio.create_task(poll_vespa_keepalive())
return
def generate_query_id(query, ranking_value):
hash_input = (query + ranking_value).encode("utf-8")
return hash(hash_input)
@rt("/static/{filepath:path}")
def serve_static(filepath: str):
return FileResponse(STATIC_DIR / filepath)
@rt("/")
def get(session):
if "session_id" not in session:
session["session_id"] = str(uuid.uuid4())
return Layout(Main(Home()), is_home=True)
@rt("/about-this-demo")
def get():
return Layout(Main(AboutThisDemo()))
@rt("/search")
def get(request, query: str = "", ranking: str = "hybrid"):
logger.info(f"/search: Fetching results for query: {query}, ranking: {ranking}")
# Always render the SearchBox first
if not query:
# Show SearchBox and a message for missing query
return Layout(
Main(
Div(
SearchBox(query_value=query, ranking_value=ranking),
Div(
P(
"No query provided. Please enter a query.",
cls="text-center text-muted-foreground",
),
cls="p-10",
),
cls="grid",
)
)
)
# Generate a unique query_id based on the query and ranking value
query_id = generate_query_id(query, ranking)
# Show the loading message if a query is provided
return Layout(
Main(Search(request), data_overlayscrollbars_initialize=True, cls="border-t"),
Aside(
ChatResult(query_id=query_id, query=query),
cls="border-t border-l hidden md:block",
),
) # Show SearchBox and Loading message initially
@rt("/fetch_results")
async def get(session, request, query: str, ranking: str):
if "hx-request" not in request.headers:
return RedirectResponse("/search")
# Get the hash of the query and ranking value
query_id = generate_query_id(query, ranking)
logger.info(f"Query id in /fetch_results: {query_id}")
# Run the embedding and query against Vespa app
start_inference = time.perf_counter()
q_embs, idx_to_token = app.sim_map_generator.get_query_embeddings_and_token_map(
query
)
end_inference = time.perf_counter()
logger.info(
f"Inference time for query_id: {query_id} \t {end_inference - start_inference:.2f} seconds"
)
start = time.perf_counter()
# Fetch real search results from Vespa
result = await vespa_app.get_result_from_query(
query=query,
q_embs=q_embs,
ranking=ranking,
idx_to_token=idx_to_token,
)
end = time.perf_counter()
logger.info(
f"Search results fetched in {end - start:.2f} seconds. Vespa search time: {result['timing']['searchtime']}"
)
search_time = result["timing"]["searchtime"]
# Safely get total_count with a default of 0
total_count = result.get("root", {}).get("fields", {}).get("totalCount", 0)
search_results = vespa_app.results_to_search_results(result, idx_to_token)
get_and_store_sim_maps(
query_id=query_id,
query=query,
q_embs=q_embs,
ranking=ranking,
idx_to_token=idx_to_token,
doc_ids=[result["fields"]["id"] for result in search_results],
)
return SearchResult(search_results, query, query_id, search_time, total_count)
def get_results_children(result):
search_results = (
result["root"]["children"]
if "root" in result and "children" in result["root"]
else []
)
return search_results
async def poll_vespa_keepalive():
while True:
await asyncio.sleep(5)
await vespa_app.keepalive()
logger.debug(f"Vespa keepalive: {time.time()}")
@threaded
def get_and_store_sim_maps(
query_id, query: str, q_embs, ranking, idx_to_token, doc_ids
):
ranking_sim = ranking + "_sim"
vespa_sim_maps = vespa_app.get_sim_maps_from_query(
query=query,
q_embs=q_embs,
ranking=ranking_sim,
idx_to_token=idx_to_token,
)
img_paths = [IMG_DIR / f"{doc_id}.jpg" for doc_id in doc_ids]
# All images should be downloaded, but best to wait 5 secs
max_wait = 5
start_time = time.time()
while (
not all([os.path.exists(img_path) for img_path in img_paths])
and time.time() - start_time < max_wait
):
time.sleep(0.2)
if not all([os.path.exists(img_path) for img_path in img_paths]):
logger.warning(f"Images not ready in 5 seconds for query_id: {query_id}")
return False
sim_map_generator = app.sim_map_generator.gen_similarity_maps(
query=query,
query_embs=q_embs,
token_idx_map=idx_to_token,
images=img_paths,
vespa_sim_maps=vespa_sim_maps,
)
for idx, token, token_idx, blended_img_base64 in sim_map_generator:
with open(SIM_MAP_DIR / f"{query_id}_{idx}_{token_idx}.png", "wb") as f:
f.write(base64.b64decode(blended_img_base64))
logger.debug(
f"Sim map saved to disk for query_id: {query_id}, idx: {idx}, token: {token}"
)
return True
@app.get("/get_sim_map")
async def get_sim_map(query_id: str, idx: int, token: str, token_idx: int):
"""
Endpoint that each of the sim map button polls to get the sim map image
when it is ready. If it is not ready, returns a SimMapButtonPoll, that
continues to poll every 1 second.
"""
sim_map_path = SIM_MAP_DIR / f"{query_id}_{idx}_{token_idx}.png"
if not os.path.exists(sim_map_path):
logger.debug(
f"Sim map not ready for query_id: {query_id}, idx: {idx}, token: {token}"
)
return SimMapButtonPoll(
query_id=query_id, idx=idx, token=token, token_idx=token_idx
)
else:
return SimMapButtonReady(
query_id=query_id,
idx=idx,
token=token,
token_idx=token_idx,
img_src=sim_map_path,
)
@app.get("/full_image")
async def full_image(doc_id: str):
"""
Endpoint to get the full quality image for a given result id.
"""
img_path = IMG_DIR / f"{doc_id}.jpg"
if not os.path.exists(img_path):
image_data = await vespa_app.get_full_image_from_vespa(doc_id)
# image data is base 64 encoded string. Save it to disk as jpg.
with open(img_path, "wb") as f:
f.write(base64.b64decode(image_data))
logger.debug(f"Full image saved to disk for doc_id: {doc_id}")
else:
with open(img_path, "rb") as f:
image_data = base64.b64encode(f.read()).decode("utf-8")
return Img(
src=f"data:image/jpeg;base64,{image_data}",
alt="something",
cls="result-image w-full h-full object-contain",
)
@rt("/suggestions")
async def get_suggestions(query: str = ""):
"""Endpoint to get suggestions as user types in the search box"""
query = query.lower().strip()
if query:
suggestions = await vespa_app.get_suggestions(query)
if len(suggestions) > 0:
return JSONResponse({"suggestions": suggestions})
return JSONResponse({"suggestions": []})
async def message_generator(query_id: str, query: str, doc_ids: list):
"""Generator function to yield SSE messages for chat response"""
images = []
num_images = 3 # Number of images before firing chat request
max_wait = 10 # seconds
start_time = time.time()
# Check if full images are ready on disk
while (
len(images) < min(num_images, len(doc_ids))
and time.time() - start_time < max_wait
):
images = []
for idx in range(num_images):
image_filename = IMG_DIR / f"{doc_ids[idx]}.jpg"
if not os.path.exists(image_filename):
logger.debug(
f"Message generator: Full image not ready for query_id: {query_id}, idx: {idx}"
)
continue
else:
logger.debug(
f"Message generator: image ready for query_id: {query_id}, idx: {idx}"
)
images.append(Image.open(image_filename))
if len(images) < num_images:
await asyncio.sleep(0.2)
# yield message with number of images ready
yield f"event: message\ndata: Generating response based on {len(images)} images...\n\n"
if not images:
yield "event: message\ndata: Failed to send images to Gemini-8B!\n\n"
yield "event: close\ndata: \n\n"
return
# If newlines are present in the response, the connection will be closed.
def replace_newline_with_br(text):
return text.replace("\n", "<br>")
response_text = ""
async for chunk in await gemini_model.generate_content_async(
images + ["\n\n Query: ", query], stream=True
):
if chunk.text:
response_text += chunk.text
response_text = replace_newline_with_br(response_text)
yield f"event: message\ndata: {response_text}\n\n"
await asyncio.sleep(0.1)
yield "event: close\ndata: \n\n"
@app.get("/get-message")
async def get_message(query_id: str, query: str, doc_ids: str):
return StreamingResponse(
message_generator(query_id=query_id, query=query, doc_ids=doc_ids.split(",")),
media_type="text/event-stream",
)
@rt("/app")
def get():
return Layout(Main(Div(P(f"Connected to Vespa at {vespa_app.url}"), cls="p-4")))
if __name__ == "__main__":
HOT_RELOAD = os.getenv("HOT_RELOAD", "False").lower() == "true"
logger.info(f"Starting app with hot reload: {HOT_RELOAD}")
serve(port=7860, reload=HOT_RELOAD)
|