thomasht86's picture
Upload folder using huggingface_hub
b08a991 verified
raw
history blame
13.5 kB
import asyncio
import base64
import hashlib
import io
import os
import time
from concurrent.futures import ThreadPoolExecutor
from functools import partial
import google.generativeai as genai
from fasthtml.common import *
from PIL import Image
from shad4fast import *
from vespa.application import Vespa
from backend.cache import LRUCache
from backend.colpali import (
add_sim_maps_to_result,
get_query_embeddings_and_token_map,
is_special_token,
)
from backend.modelmanager import ModelManager
from pathlib import Path
from backend.vespa_app import VespaQueryClient
from frontend.app import (
ChatResult,
Home,
Search,
SearchBox,
SearchResult,
SimMapButtonPoll,
SimMapButtonReady,
)
from frontend.layout import Layout
highlight_js_theme_link = Link(id="highlight-theme", rel="stylesheet", href="")
highlight_js_theme = Script(src="/static/js/highlightjs-theme.js")
highlight_js = HighlightJS(
langs=["python", "javascript", "java", "json", "xml"],
dark="github-dark",
light="github",
)
overlayscrollbars_link = Link(
rel="stylesheet",
href="https://cdnjs.cloudflare.com/ajax/libs/overlayscrollbars/2.10.0/styles/overlayscrollbars.min.css",
type="text/css",
)
overlayscrollbars_js = Script(
src="https://cdnjs.cloudflare.com/ajax/libs/overlayscrollbars/2.10.0/browser/overlayscrollbars.browser.es5.min.js"
)
awesomplete_link = Link(
rel="stylesheet",
href="https://cdnjs.cloudflare.com/ajax/libs/awesomplete/1.1.7/awesomplete.min.css",
type="text/css",
)
awesomplete_js = Script(
src="https://cdnjs.cloudflare.com/ajax/libs/awesomplete/1.1.7/awesomplete.min.js"
)
sselink = Script(src="https://unpkg.com/htmx-ext-sse@2.2.1/sse.js")
app, rt = fast_app(
htmlkw={"cls": "grid h-full"},
pico=False,
hdrs=(
highlight_js,
highlight_js_theme_link,
highlight_js_theme,
overlayscrollbars_link,
overlayscrollbars_js,
awesomplete_link,
awesomplete_js,
sselink,
ShadHead(tw_cdn=False, theme_handle=True),
),
)
vespa_app: Vespa = VespaQueryClient()
result_cache = LRUCache(max_size=20) # Each result can be ~10MB
task_cache = LRUCache(
max_size=1000
) # Map from query_id to boolean value - False if not all results are ready.
thread_pool = ThreadPoolExecutor()
# Gemini config
genai.configure(api_key=os.getenv("GEMINI_API_KEY"))
GEMINI_SYSTEM_PROMPT = """If the user query is a question, try your best to answer it based on the provided images.
If the user query can not be interpreted as a question, or if the answer to the query can not be inferred from the images,
answer with the exact phrase "I am sorry, I do not have enough information in the image to answer your question.".
Your response should be HTML formatted, but only simple tags, such as <b>. <p>, <i>, <br> <ul> and <li> are allowed. No HTML tables.
This means that newlines will be replaced with <br> tags, bold text will be enclosed in <b> tags, and so on.
But, you should NOT include backticks (`) or HTML tags in your response.
"""
gemini_model = genai.GenerativeModel(
"gemini-1.5-flash-8b", system_instruction=GEMINI_SYSTEM_PROMPT
)
STATIC_DIR = Path(__file__).parent / "static"
IMG_DIR = STATIC_DIR / "saved"
os.makedirs(IMG_DIR, exist_ok=True)
@app.on_event("startup")
def load_model_on_startup():
app.manager = ModelManager.get_instance()
return
@app.on_event("startup")
async def keepalive():
asyncio.create_task(poll_vespa_keepalive())
return
def generate_query_id(query):
return hashlib.md5(query.encode("utf-8")).hexdigest()
@rt("/static/{filepath:path}")
def serve_static(filepath: str):
return FileResponse(STATIC_DIR / filepath)
@rt("/")
def get():
return Layout(Main(Home()))
@rt("/search")
def get(request):
# Extract the 'query' and 'ranking' parameters from the URL
query_value = request.query_params.get("query", "").strip()
ranking_value = request.query_params.get("ranking", "nn+colpali")
print("/search: Fetching results for ranking_value:", ranking_value)
# Always render the SearchBox first
if not query_value:
# Show SearchBox and a message for missing query
return Layout(
Main(
Div(
SearchBox(query_value=query_value, ranking_value=ranking_value),
Div(
P(
"No query provided. Please enter a query.",
cls="text-center text-muted-foreground",
),
cls="p-10",
),
cls="grid",
)
)
)
# Generate a unique query_id based on the query and ranking value
query_id = generate_query_id(query_value + ranking_value)
# See if results are already in cache
# if result_cache.get(query_id) is not None:
# print(f"Results for query_id {query_id} already in cache")
# result = result_cache.get(query_id)
# search_results = get_results_children(result)
# return Layout(Search(request, search_results))
# Show the loading message if a query is provided
return Layout(
Main(Search(request), data_overlayscrollbars_initialize=True, cls="border-t"),
Aside(
ChatResult(query_id=query_id, query=query_value),
cls="border-t border-l hidden md:block",
),
) # Show SearchBox and Loading message initially
@rt("/fetch_results")
async def get(request, query: str, nn: bool = True):
if "hx-request" not in request.headers:
return RedirectResponse("/search")
# Extract ranking option from the request
ranking_value = request.query_params.get("ranking")
print(
f"/fetch_results: Fetching results for query: {query}, ranking: {ranking_value}"
)
# Generate a unique query_id based on the query and ranking value
query_id = generate_query_id(query + ranking_value)
# See if results are already in cache
# if result_cache.get(query_id) is not None:
# print(f"Results for query_id {query_id} already in cache")
# result = result_cache.get(query_id)
# search_results = get_results_children(result)
# return SearchResult(search_results, query_id)
# Run the embedding and query against Vespa app
task_cache.set(query_id, False)
model = app.manager.model
processor = app.manager.processor
q_embs, token_to_idx = get_query_embeddings_and_token_map(processor, model, query)
start = time.perf_counter()
# Fetch real search results from Vespa
result = await vespa_app.get_result_from_query(
query=query,
q_embs=q_embs,
ranking=ranking_value,
token_to_idx=token_to_idx,
)
end = time.perf_counter()
print(
f"Search results fetched in {end - start:.2f} seconds, Vespa says searchtime was {result['timing']['searchtime']} seconds"
)
# Add result to cache
result_cache.set(query_id, result)
# Start generating the similarity map in the background
asyncio.create_task(
generate_similarity_map(
model, processor, query, q_embs, token_to_idx, result, query_id
)
)
fields_to_add = [
f"sim_map_{token}"
for token in token_to_idx.keys()
if not is_special_token(token)
]
search_results = get_results_children(result)
for result in search_results:
for sim_map_key in fields_to_add:
result["fields"][sim_map_key] = None
return SearchResult(search_results, query_id)
def get_results_children(result):
search_results = (
result["root"]["children"]
if "root" in result and "children" in result["root"]
else []
)
return search_results
async def poll_vespa_keepalive():
while True:
await asyncio.sleep(5)
await vespa_app.keepalive()
print(f"Vespa keepalive: {time.time()}")
async def generate_similarity_map(
model, processor, query, q_embs, token_to_idx, result, query_id
):
loop = asyncio.get_event_loop()
sim_map_task = partial(
add_sim_maps_to_result,
result=result,
model=model,
processor=processor,
query=query,
q_embs=q_embs,
token_to_idx=token_to_idx,
query_id=query_id,
result_cache=result_cache,
)
sim_map_result = await loop.run_in_executor(thread_pool, sim_map_task)
result_cache.set(query_id, sim_map_result)
task_cache.set(query_id, True)
@app.get("/get_sim_map")
async def get_sim_map(query_id: str, idx: int, token: str):
"""
Endpoint that each of the sim map button polls to get the sim map image
when it is ready. If it is not ready, returns a SimMapButtonPoll, that
continues to poll every 1 second.
"""
result = result_cache.get(query_id)
if result is None:
return SimMapButtonPoll(query_id=query_id, idx=idx, token=token)
search_results = get_results_children(result)
# Check if idx exists in list of children
if idx >= len(search_results):
return SimMapButtonPoll(query_id=query_id, idx=idx, token=token)
else:
sim_map_key = f"sim_map_{token}"
sim_map_b64 = search_results[idx]["fields"].get(sim_map_key, None)
if sim_map_b64 is None:
return SimMapButtonPoll(query_id=query_id, idx=idx, token=token)
sim_map_img_src = f"data:image/png;base64,{sim_map_b64}"
return SimMapButtonReady(
query_id=query_id, idx=idx, token=token, img_src=sim_map_img_src
)
async def update_full_image_cache(docid: str, query_id: str, idx: int, image_data: str):
result = None
max_wait = 20 # seconds. If horribly slow network latency.
start_time = time.time()
while result is None and time.time() - start_time < max_wait:
result = result_cache.get(query_id)
if result is None:
await asyncio.sleep(0.1)
try:
result["root"]["children"][idx]["fields"]["full_image"] = image_data
except KeyError as err:
print(f"Error updating full image cache: {err}")
result_cache.set(query_id, result)
print(f"Full image cache updated for query_id {query_id}")
return
@app.get("/full_image")
async def full_image(docid: str, query_id: str, idx: int):
"""
Endpoint to get the full quality image for a given result id.
"""
image_data = await vespa_app.get_full_image_from_vespa(docid)
# Update the cache with the full image data asynchronously to not block the request
asyncio.create_task(update_full_image_cache(docid, query_id, idx, image_data))
# Save the image to a file
img_path = IMG_DIR / f"{docid}.jpg"
with open(img_path, "wb") as f:
f.write(base64.b64decode(image_data))
return Img(
src=f"/static/saved/{docid}.jpg",
alt="something",
cls="result-image w-full h-full object-contain",
)
@rt("/suggestions")
async def get_suggestions(request):
query = request.query_params.get("query", "").lower().strip()
if query:
suggestions = await vespa_app.get_suggestions(query)
if len(suggestions) > 0:
return JSONResponse({"suggestions": suggestions})
return JSONResponse({"suggestions": []})
async def message_generator(query_id: str, query: str):
images = []
result = None
all_images_ready = False
max_wait = 10 # seconds
start_time = time.time()
while not all_images_ready and time.time() - start_time < max_wait:
result = result_cache.get(query_id)
if result is None:
await asyncio.sleep(0.1)
continue
search_results = get_results_children(result)
for single_result in search_results:
img = single_result["fields"].get("full_image", None)
if img is not None:
images.append(img)
if len(images) == len(search_results):
all_images_ready = True
break
else:
await asyncio.sleep(0.1)
# from b64 to PIL image
images = [Image.open(io.BytesIO(base64.b64decode(img))) for img in images]
if not images:
yield "event: message\ndata: I am sorry, I do not have enough information in the image to answer your question.\n\n"
yield "event: close\ndata: \n\n"
return
# If newlines are present in the response, the connection will be closed.
def replace_newline_with_br(text):
return text.replace("\n", "<br>")
response_text = ""
async for chunk in await gemini_model.generate_content_async(
images + ["\n\n Query: ", query], stream=True
):
if chunk.text:
response_text += chunk.text
response_text = replace_newline_with_br(response_text)
yield f"event: message\ndata: {response_text}\n\n"
await asyncio.sleep(0.1)
yield "event: close\ndata: \n\n"
@app.get("/get-message")
async def get_message(query_id: str, query: str):
return StreamingResponse(
message_generator(query_id=query_id, query=query),
media_type="text/event-stream",
)
@rt("/app")
def get():
return Layout(Main(Div(P(f"Connected to Vespa at {vespa_app.url}"), cls="p-4")))
if __name__ == "__main__":
# ModelManager.get_instance() # Initialize once at startup
serve(port=7860)