Spaces:
Paused
Paused
import logging | |
import os | |
import boto3 | |
import json | |
import shlex | |
import subprocess | |
import tempfile | |
import time | |
import base64 | |
import gradio as gr | |
import numpy as np | |
import rembg | |
import spaces | |
import torch | |
from PIL import Image | |
from functools import partial | |
import io | |
from io import BytesIO | |
torch.cuda.empty_cache() | |
subprocess.run(shlex.split('pip install wheel/torchmcubes-0.1.0-cp310-cp310-linux_x86_64.whl')) | |
from tsr.system import TSR | |
from tsr.utils import remove_background, resize_foreground, to_gradio_3d_orientation | |
HEADER = """FRAME AI""" | |
if torch.cuda.is_available(): | |
device = "cuda:0" | |
else: | |
device = "cpu" | |
model = TSR.from_pretrained( | |
"stabilityai/TripoSR", | |
config_name="config.yaml", | |
weight_name="model.ckpt", | |
) | |
model.renderer.set_chunk_size(131072) | |
model.to(device) | |
rembg_session = rembg.new_session() | |
ACCESS = os.getenv("ACCESS") | |
SECRET = os.getenv("SECRET") | |
bedrock = boto3.client(service_name='bedrock', aws_access_key_id = ACCESS, aws_secret_access_key = SECRET, region_name='us-east-1') | |
bedrock_runtime = boto3.client(service_name='bedrock-runtime', aws_access_key_id = ACCESS, aws_secret_access_key = SECRET, region_name='us-east-1') | |
# def generate_image_from_text(pos_prompt): | |
# # bedrock_runtime = boto3.client(region_name = 'us-east-1', service_name='bedrock-runtime') | |
# parameters = {'text_prompts': [{'text': pos_prompt , 'weight':1}, | |
# {'text': """Blurry, out of frame, out of focus, Detailed, dull, duplicate, bad quality, low resolution, cropped""", 'weight': -1}], | |
# 'cfg_scale': 7, 'seed': 0, 'samples': 1} | |
# request_body = json.dumps(parameters) | |
# response = bedrock_runtime.invoke_model(body=request_body,modelId = 'stability.stable-diffusion-xl-v1') | |
# response_body = json.loads(response.get('body').read()) | |
# base64_image_data = base64.b64decode(response_body['artifacts'][0]['base64']) | |
# return Image.open(io.BytesIO(base64_image_data)) | |
def gen_pos_prompt(text): | |
instruction = f'''Your task is to create a positive prompt for image generation. | |
Objective: Generate images that prioritize structural integrity and accurate shapes. The focus should be on the correct form and basic contours of objects, with minimal concern for colors. | |
Guidelines: | |
Complex Objects (e.g., animals, vehicles): For these, the image should resemble a toy object, emphasizing the correct shape and structure while minimizing details and color complexity. | |
Example Input: A sports bike | |
Example Positive Prompt: Simple sports bike with accurate shape and structure, minimal details, digital painting, concept art style, basic contours, soft lighting, clean lines, neutral or muted colors, toy-like appearance, low contrast. | |
Example Input: A lion | |
Example Positive Prompt: Toy-like depiction of a lion with a focus on structural accuracy, minimal details, digital painting, concept art style, basic contours, soft lighting, clean lines, neutral or muted colors, simplified features, low contrast. | |
Simple Objects (e.g., a tennis ball): For these, the prompt should specify a realistic depiction, focusing on the accurate shape and structure. | |
Example Input: A tennis ball | |
Example Positive Prompt: Realistic depiction of a tennis ball with accurate shape and texture, digital painting, clean lines, minimal additional details, soft lighting, neutral or muted colors, focus on structural integrity. | |
Prompt Structure: | |
Subject: Clearly describe the object and its essential shape and structure. | |
Medium: Specify the art style (e.g., digital painting, concept art). | |
Style: Include relevant style terms (e.g., simplified, toy-like for complex objects; realistic for simple objects). | |
Resolution: Mention resolution if necessary (e.g., basic resolution). | |
Lighting: Indicate the type of lighting (e.g., soft lighting). | |
Color: Use neutral or muted colors with minimal emphasis on color details. | |
Additional Details: Keep additional details minimal or specify if not desired. | |
Input: {text} | |
Positive Prompt: | |
''' | |
body = json.dumps({'inputText': instruction, | |
'textGenerationConfig': {'temperature': 0.1, 'topP': 0.01, 'maxTokenCount':512}}) | |
response = bedrock_runtime.invoke_model(body=body, modelId='amazon.titan-text-express-v1') | |
pos_prompt = json.loads(response.get('body').read())['results'][0]['outputText'] | |
return pos_prompt | |
def encode_image_to_base64(image): | |
with io.BytesIO() as buffered: | |
image.save(buffered, format="PNG") | |
return base64.b64encode(buffered.getvalue()).decode('utf-8') | |
def generate_image_from_text(encoded_image, seed, pos_prompt=None): | |
neg_prompt = '''Detailed, complex textures, intricate patterns, realistic lighting, high contrast, reflections, fuzzy surface, realistic proportions, photographic quality, vibrant colors, detailed background, shadows, disfigured, deformed, ugly, multiple, duplicate.''' | |
encoded_str = encode_image_to_base64(encoded_image) | |
if pos_prompt: | |
parameters = { | |
'taskType': 'IMAGE_VARIATION', | |
'imageVariationParams': { | |
'images': [encoded_str], | |
'text': gen_pos_prompt(pos_prompt), | |
'negativeText': neg_prompt, | |
'similarityStrength': 0.7 | |
}, | |
'imageGenerationConfig': { | |
"cfgScale": 8, | |
"seed": int(seed), | |
"width": 512, | |
"height": 512, | |
"numberOfImages": 1 | |
} | |
} | |
else: | |
parameters = { | |
'taskType': 'IMAGE_VARIATION', | |
'imageVariationParams': { | |
'images': [encoded_str], | |
'negativeText': neg_prompt, | |
'similarityStrength': 0.7 | |
}, | |
'imageGenerationConfig': { | |
"cfgScale": 8, | |
"seed": int(seed), | |
"width": 512, | |
"height": 512, | |
"numberOfImages": 1 | |
} | |
} | |
request_body = json.dumps(parameters) | |
response = bedrock_runtime.invoke_model(body=request_body, modelId='amazon.titan-image-generator-v1') | |
response_body = json.loads(response.get('body').read()) | |
base64_image_data = base64.b64decode(response_body['images'][0]) | |
return Image.open(io.BytesIO(base64_image_data)) | |
def check_input_image(input_image): | |
print(input_image) | |
if input_image is None: | |
raise gr.Error("No image uploaded!") | |
def preprocess(input_image, do_remove_background, foreground_ratio): | |
def fill_background(image): | |
image = np.array(image).astype(np.float32) / 255.0 | |
image = image[:, :, :3] * image[:, :, 3:4] + (1 - image[:, :, 3:4]) * 0.5 | |
image = Image.fromarray((image * 255.0).astype(np.uint8)) | |
return image | |
if do_remove_background: | |
image = input_image.convert("RGB") | |
image = remove_background(image, rembg_session) | |
image = resize_foreground(image, foreground_ratio) | |
image = fill_background(image) | |
else: | |
image = input_image | |
if image.mode == "RGBA": | |
image = fill_background(image) | |
return image | |
def generate(image, mc_resolution, formats=["obj", "glb"]): | |
scene_codes = model(image, device=device) | |
mesh = model.extract_mesh(scene_codes, resolution=mc_resolution)[0] | |
mesh = to_gradio_3d_orientation(mesh) | |
mesh_path_glb = tempfile.NamedTemporaryFile(suffix=f".glb", delete=False) | |
mesh.export(mesh_path_glb.name) | |
mesh_path_obj = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False) | |
mesh.apply_scale([-1, 1, 1]) # Otherwise the visualized .obj will be flipped | |
mesh.export(mesh_path_obj.name) | |
return mesh_path_obj.name, mesh_path_glb.name | |
def run_example(image, seed, use_image, do_remove_background, foreground_ratio, mc_resolution, text_prompt=None): | |
if use_image: | |
image_pil = generate_image_from_text(encoded_image=image, seed=seed, pos_prompt=text_prompt) | |
else: | |
image_pil = image | |
preprocessed = preprocess(image_pil, do_remove_background, foreground_ratio) | |
mesh_name_obj, mesh_name_glb = generate(preprocessed, 256, ["obj", "glb"]) | |
return preprocessed, mesh_name_obj, mesh_name_glb | |
with gr.Blocks() as demo: | |
gr.Markdown(HEADER) | |
with gr.Row(variant="panel"): | |
with gr.Column(): | |
with gr.Row(): | |
input_image = gr.Image( | |
label="Generated Image", | |
image_mode="RGBA", | |
sources="upload", | |
type="pil", | |
elem_id="content_image" | |
) | |
text_prompt = gr.Textbox( | |
label="Text Prompt", | |
placeholder="Enter Positive Prompt" | |
) | |
seed = gr.Textbox(label="Random Seed", value=0) | |
use_image = gr.Checkbox( | |
label="Enhance Image", value=True | |
) | |
processed_image = gr.Image(label="Processed Image", interactive=False, visible=False) | |
with gr.Row(): | |
with gr.Group(): | |
do_remove_background = gr.Checkbox( | |
label="Remove Background", value=True | |
) | |
foreground_ratio = gr.Slider( | |
label="Foreground Ratio", | |
minimum=0.5, | |
maximum=1.0, | |
value=0.85, | |
step=0.05, | |
) | |
mc_resolution = gr.Slider( | |
label="Marching Cubes Resolution", | |
minimum=32, | |
maximum=320, | |
value=256, | |
step=32 | |
) | |
with gr.Row(): | |
submit = gr.Button("Generate", elem_id="generate", variant="primary") | |
with gr.Column(): | |
with gr.Tab("OBJ"): | |
output_model_obj = gr.Model3D( | |
label="Output Model (OBJ Format)", | |
interactive=False, | |
) | |
gr.Markdown("Note: Downloaded object will be flipped in case of .obj export. Export .glb instead or manually flip it before usage.") | |
with gr.Tab("GLB"): | |
output_model_glb = gr.Model3D( | |
label="Output Model (GLB Format)", | |
interactive=False, | |
) | |
gr.Markdown("Note: The model shown here has a darker appearance. Download to get correct results.") | |
submit.click(fn=check_input_image, inputs=[input_image]).success( | |
fn=run_example, | |
inputs=[input_image, seed, use_image, do_remove_background, foreground_ratio, mc_resolution, text_prompt], | |
outputs=[processed_image, output_model_obj, output_model_glb], | |
# outputs=[output_model_obj, output_model_glb], | |
) | |
demo.queue() | |
demo.launch(auth=(os.getenv("USERNAME"),os.getenv("PASSWORD"))) |