FaceClone / dofaker /pose /pose_estimator.py
victorisgeek's picture
Upload 4 files
590c25b verified
raw
history blame
12.5 kB
import numpy as np
import cv2
from scipy.ndimage.filters import gaussian_filter
from .pose_utils import _get_keypoints, _pad_image
from insightface import model_zoo
from dofaker.utils import download_file, get_model_url
class PoseEstimator:
def __init__(self, name='openpose_body', root='weights/models'):
_, model_file = download_file(get_model_url(name),
save_dir=root,
overwrite=False)
providers = model_zoo.model_zoo.get_default_providers()
self.session = model_zoo.model_zoo.PickableInferenceSession(
model_file, providers=providers)
self.input_mean = 127.5
self.input_std = 255.0
inputs = self.session.get_inputs()
self.input_names = []
for inp in inputs:
self.input_names.append(inp.name)
outputs = self.session.get_outputs()
output_names = []
for out in outputs:
output_names.append(out.name)
self.output_names = output_names
assert len(
self.output_names
) == 2, "The output number of PoseEstimator model should be 2, but got {}, please check your model.".format(
len(self.output_names))
output_shape = outputs[0].shape
input_cfg = inputs[0]
input_shape = input_cfg.shape
self.input_shape = input_shape
print('pose estimator shape:', self.input_shape)
def forward(self, image, image_format='rgb'):
if isinstance(image, str):
image = cv2.imread(image, 1)
image_format = 'bgr'
elif isinstance(image, np.ndarray):
if image_format == 'bgr':
pass
elif image_format == 'rgb':
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
image_format = 'bgr'
else:
raise UserWarning(
"PoseEstimator not support image format {}".format(
image_format))
else:
raise UserWarning(
"PoseEstimator input must be str or np.ndarray, but got {}.".
format(type(image)))
scales = [0.5]
stride = 8
bboxsize = 368
padvalue = 128
thresh_1 = 0.1
thresh_2 = 0.05
multipliers = [scale * bboxsize / image.shape[0] for scale in scales]
heatmap_avg = np.zeros((image.shape[0], image.shape[1], 19))
paf_avg = np.zeros((image.shape[0], image.shape[1], 38))
for scale in multipliers:
image_scaled = cv2.resize(image, (0, 0),
fx=scale,
fy=scale,
interpolation=cv2.INTER_CUBIC)
image_padded, pads = _pad_image(image_scaled, stride, padvalue)
image_tensor = np.expand_dims(np.transpose(image_padded, (2, 0, 1)),
0)
blob = (np.float32(image_tensor) - self.input_mean) / self.input_std
pred = self.session.run(self.output_names,
{self.input_names[0]: blob})
Mconv7_stage6_L1, Mconv7_stage6_L2 = pred[0], pred[1]
heatmap = np.transpose(np.squeeze(Mconv7_stage6_L2), (1, 2, 0))
heatmap = cv2.resize(heatmap, (0, 0),
fx=stride,
fy=stride,
interpolation=cv2.INTER_CUBIC)
heatmap = heatmap[:image_padded.shape[0] -
pads[3], :image_padded.shape[1] - pads[2], :]
heatmap = cv2.resize(heatmap, (image.shape[1], image.shape[0]),
interpolation=cv2.INTER_CUBIC)
paf = np.transpose(np.squeeze(Mconv7_stage6_L1), (1, 2, 0))
paf = cv2.resize(paf, (0, 0),
fx=stride,
fy=stride,
interpolation=cv2.INTER_CUBIC)
paf = paf[:image_padded.shape[0] - pads[3], :image_padded.shape[1] -
pads[2], :]
paf = cv2.resize(paf, (image.shape[1], image.shape[0]),
interpolation=cv2.INTER_CUBIC)
heatmap_avg += (heatmap / len(multipliers))
paf_avg += (paf / len(multipliers))
all_peaks = []
num_peaks = 0
for part in range(18):
map_orig = heatmap_avg[:, :, part]
map_filt = gaussian_filter(map_orig, sigma=3)
map_L = np.zeros_like(map_filt)
map_T = np.zeros_like(map_filt)
map_R = np.zeros_like(map_filt)
map_B = np.zeros_like(map_filt)
map_L[1:, :] = map_filt[:-1, :]
map_T[:, 1:] = map_filt[:, :-1]
map_R[:-1, :] = map_filt[1:, :]
map_B[:, :-1] = map_filt[:, 1:]
peaks_binary = np.logical_and.reduce(
(map_filt >= map_L, map_filt >= map_T, map_filt
>= map_R, map_filt >= map_B, map_filt > thresh_1))
peaks = list(
zip(np.nonzero(peaks_binary)[1],
np.nonzero(peaks_binary)[0]))
peaks_ids = range(num_peaks, num_peaks + len(peaks))
peaks_with_scores = [
peak + (map_orig[peak[1], peak[0]], ) for peak in peaks
]
peaks_with_scores_and_ids = [peaks_with_scores[i] + (peaks_ids[i],) \
for i in range(len(peaks_ids))]
all_peaks.append(peaks_with_scores_and_ids)
num_peaks += len(peaks)
map_idx = [[31, 32], [39, 40], [33, 34], [35, 36], [41, 42], [43, 44],
[19, 20], [21, 22], [23, 24], [25, 26], [27, 28], [29, 30],
[47, 48], [49, 50], [53, 54], [51, 52], [55, 56], [37, 38],
[45, 46]]
limbseq = [[2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9],
[9, 10], [10, 11], [2, 12], [12, 13], [13, 14], [2, 1],
[1, 15], [15, 17], [1, 16], [16, 18], [3, 17], [6, 18]]
all_connections = []
spl_k = []
mid_n = 10
for k in range(len(map_idx)):
score_mid = paf_avg[:, :, [x - 19 for x in map_idx[k]]]
candidate_A = all_peaks[limbseq[k][0] - 1]
candidate_B = all_peaks[limbseq[k][1] - 1]
n_A = len(candidate_A)
n_B = len(candidate_B)
index_A, index_B = limbseq[k]
if n_A != 0 and n_B != 0:
connection_candidates = []
for i in range(n_A):
for j in range(n_B):
v = np.subtract(candidate_B[j][:2], candidate_A[i][:2])
n = np.sqrt(v[0] * v[0] + v[1] * v[1])
v = np.divide(v, n)
ab = list(
zip(
np.linspace(candidate_A[i][0],
candidate_B[j][0],
num=mid_n),
np.linspace(candidate_A[i][1],
candidate_B[j][1],
num=mid_n)))
vx = np.array([
score_mid[int(round(ab[x][1])),
int(round(ab[x][0])), 0]
for x in range(len(ab))
])
vy = np.array([
score_mid[int(round(ab[x][1])),
int(round(ab[x][0])), 1]
for x in range(len(ab))
])
score_midpoints = np.multiply(vx, v[0]) + np.multiply(
vy, v[1])
score_with_dist_prior = sum(
score_midpoints) / len(score_midpoints) + min(
0.5 * image.shape[0] / n - 1, 0)
criterion_1 = len(
np.nonzero(score_midpoints > thresh_2)
[0]) > 0.8 * len(score_midpoints)
criterion_2 = score_with_dist_prior > 0
if criterion_1 and criterion_2:
connection_candidate = [
i, j, score_with_dist_prior,
score_with_dist_prior + candidate_A[i][2] +
candidate_B[j][2]
]
connection_candidates.append(connection_candidate)
connection_candidates = sorted(connection_candidates,
key=lambda x: x[2],
reverse=True)
connection = np.zeros((0, 5))
for candidate in connection_candidates:
i, j, s = candidate[0:3]
if i not in connection[:, 3] and j not in connection[:, 4]:
connection = np.vstack([
connection,
[candidate_A[i][3], candidate_B[j][3], s, i, j]
])
if len(connection) >= min(n_A, n_B):
break
all_connections.append(connection)
else:
spl_k.append(k)
all_connections.append([])
candidate = np.array(
[item for sublist in all_peaks for item in sublist])
subset = np.ones((0, 20)) * -1
for k in range(len(map_idx)):
if k not in spl_k:
part_As = all_connections[k][:, 0]
part_Bs = all_connections[k][:, 1]
index_A, index_B = np.array(limbseq[k]) - 1
for i in range(len(all_connections[k])):
found = 0
subset_idx = [-1, -1]
for j in range(len(subset)):
if subset[j][index_A] == part_As[i] or subset[j][
index_B] == part_Bs[i]:
subset_idx[found] = j
found += 1
if found == 1:
j = subset_idx[0]
if subset[j][index_B] != part_Bs[i]:
subset[j][index_B] = part_Bs[i]
subset[j][-1] += 1
subset[j][-2] += candidate[
part_Bs[i].astype(int),
2] + all_connections[k][i][2]
elif found == 2:
j1, j2 = subset_idx
membership = ((subset[j1] >= 0).astype(int) +
(subset[j2] >= 0).astype(int))[:-2]
if len(np.nonzero(membership == 2)[0]) == 0:
subset[j1][:-2] += (subset[j2][:-2] + 1)
subset[j1][-2:] += subset[j2][-2:]
subset[j1][-2] += all_connections[k][i][2]
subset = np.delete(subset, j2, 0)
else:
subset[j1][index_B] = part_Bs[i]
subset[j1][-1] += 1
subset[j1][-2] += candidate[
part_Bs[i].astype(int),
2] + all_connections[k][i][2]
elif not found and k < 17:
row = np.ones(20) * -1
row[index_A] = part_As[i]
row[index_B] = part_Bs[i]
row[-1] = 2
row[-2] = sum(
candidate[all_connections[k][i, :2].astype(int),
2]) + all_connections[k][i][2]
subset = np.vstack([subset, row])
del_idx = []
for i in range(len(subset)):
if subset[i][-1] < 4 or subset[i][-2] / subset[i][-1] < 0.4:
del_idx.append(i)
subset = np.delete(subset, del_idx, axis=0)
return _get_keypoints(candidate, subset)
def get(self, image, image_format='rgb'):
return self.forward(image, image_format)