File size: 11,878 Bytes
edc0f20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
# Copyright 2022 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import torch
from PIL import Image, ImageDraw, ImageFont
import cv2
from typing import Optional, Union, Tuple, List, Callable, Dict
from IPython.display import display
from tqdm.notebook import tqdm


def text_under_image(image: np.ndarray, text: str, text_color: Tuple[int, int, int] = (0, 0, 0)):
    h, w, c = image.shape
    offset = int(h * .2)
    img = np.ones((h + offset, w, c), dtype=np.uint8) * 255
    font = cv2.FONT_HERSHEY_SIMPLEX
    img[:h] = image
    textsize = cv2.getTextSize(text, font, 1, 2)[0]
    text_x, text_y = (w - textsize[0]) // 2, h + offset - textsize[1] // 2
    cv2.putText(img, text, (text_x, text_y ), font, 1, text_color, 2)
    return img


def view_images(images, num_rows=1, offset_ratio=0.02):
    if type(images) is list:
        num_empty = len(images) % num_rows
    elif images.ndim == 4:
        num_empty = images.shape[0] % num_rows
    else:
        images = [images]
        num_empty = 0

    empty_images = np.ones(images[0].shape, dtype=np.uint8) * 255
    images = [image.astype(np.uint8) for image in images] + [empty_images] * num_empty
    num_items = len(images)

    h, w, c = images[0].shape
    offset = int(h * offset_ratio)
    num_cols = num_items // num_rows
    image_ = np.ones((h * num_rows + offset * (num_rows - 1),
                      w * num_cols + offset * (num_cols - 1), 3), dtype=np.uint8) * 255
    for i in range(num_rows):
        for j in range(num_cols):
            image_[i * (h + offset): i * (h + offset) + h:, j * (w + offset): j * (w + offset) + w] = images[
                i * num_cols + j]

    pil_img = Image.fromarray(image_)
    display(pil_img)


def diffusion_step(model, controller, latents, context, t, guidance_scale, low_resource=False, simple=False):
    if low_resource:
        noise_pred_uncond = model.unet(latents, t, encoder_hidden_states=context[0])["sample"]
        noise_prediction_text = model.unet(latents, t, encoder_hidden_states=context[1])["sample"]
    else:
        latents_input = torch.cat([latents] * 2)
        noise_pred = model.unet(latents_input, t, encoder_hidden_states=context)["sample"]
        noise_pred_uncond, noise_prediction_text = noise_pred.chunk(2)
    noise_pred = noise_pred_uncond + guidance_scale * (noise_prediction_text - noise_pred_uncond)
    if simple:
        noise_pred[0] = noise_prediction_text[0]
    latents = model.scheduler.step(noise_pred, t, latents)["prev_sample"]
    # first latents: torch.Size([1, 4, 4, 64, 64])
    latents = controller.step_callback(latents)
    return latents


def latent2image(vae, latents):
    latents = 1 / 0.18215 * latents
    image = vae.decode(latents)['sample']
    image = (image / 2 + 0.5).clamp(0, 1)
    image = image.cpu().permute(0, 2, 3, 1).numpy()
    image = (image * 255).astype(np.uint8)
    return image


@torch.no_grad()
def latent2image_video(vae, latents):
    latents = 1 / 0.18215 * latents
    latents = latents[0].permute(1, 0, 2, 3)
    image = vae.decode(latents)['sample']
    image = (image / 2 + 0.5).clamp(0, 1)
    image = image.cpu().permute(0, 2, 3, 1).numpy()
    image = (image * 255).astype(np.uint8)
    return image


def init_latent(latent, model, height, width, generator, batch_size):
    if latent is None:
        latent = torch.randn(
            (1, model.unet.in_channels, height // 8, width // 8),
            generator=generator,
        )
    latents = latent.expand(batch_size,  model.unet.in_channels, height // 8, width // 8).to(model.device)
    return latent, latents


@torch.no_grad()
def text2image_ldm(
    model,
    prompt:  List[str],
    controller,
    num_inference_steps: int = 50,
    guidance_scale: Optional[float] = 7.,
    generator: Optional[torch.Generator] = None,
    latent: Optional[torch.FloatTensor] = None,
):
    register_attention_control(model, controller)
    height = width = 256
    batch_size = len(prompt)
    
    uncond_input = model.tokenizer([""] * batch_size, padding="max_length", max_length=77, return_tensors="pt")
    uncond_embeddings = model.bert(uncond_input.input_ids.to(model.device))[0]
    
    text_input = model.tokenizer(prompt, padding="max_length", max_length=77, return_tensors="pt")
    text_embeddings = model.bert(text_input.input_ids.to(model.device))[0]
    latent, latents = init_latent(latent, model, height, width, generator, batch_size)
    context = torch.cat([uncond_embeddings, text_embeddings])
    
    model.scheduler.set_timesteps(num_inference_steps)
    for t in tqdm(model.scheduler.timesteps):
        latents = diffusion_step(model, controller, latents, context, t, guidance_scale)
    
    image = latent2image(model.vqvae, latents)
   
    return image, latent


@torch.no_grad()
def text2image_ldm_stable(
    model,
    prompt: List[str],
    controller,
    num_inference_steps: int = 50,
    guidance_scale: float = 7.5,
    generator: Optional[torch.Generator] = None,
    latent: Optional[torch.FloatTensor] = None,
    low_resource: bool = False,
):
    register_attention_control(model, controller)
    height = width = 512
    batch_size = len(prompt)

    text_input = model.tokenizer(
        prompt,
        padding="max_length",
        max_length=model.tokenizer.model_max_length,
        truncation=True,
        return_tensors="pt",
    )
    text_embeddings = model.text_encoder(text_input.input_ids.to(model.device))[0]
    max_length = text_input.input_ids.shape[-1]
    uncond_input = model.tokenizer(
        [""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
    )
    uncond_embeddings = model.text_encoder(uncond_input.input_ids.to(model.device))[0]
    
    context = [uncond_embeddings, text_embeddings]
    if not low_resource:
        context = torch.cat(context)
    
    latent, latents = init_latent(latent, model, height, width, generator, batch_size)
    
    # set timesteps
    extra_set_kwargs = {"offset": 1}
    model.scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs)
    for t in tqdm(model.scheduler.timesteps):
        latents = diffusion_step(model, controller, latents, context, t, guidance_scale, low_resource)
    
    image = latent2image(model.vae, latents)
  
    return image, latent


def register_attention_control(model, controller):
    def ca_forward(self, place_in_unet):
        to_out = self.to_out
        if type(to_out) is torch.nn.modules.container.ModuleList:
            to_out = self.to_out[0]
        else:
            to_out = self.to_out

        def forward(x, encoder_hidden_states=None, attention_mask=None):
            context = encoder_hidden_states
            mask = attention_mask
            batch_size, sequence_length, dim = x.shape
            h = self.heads
            q = self.to_q(x)
            is_cross = context is not None
            context = context if is_cross else x
            k = self.to_k(context)
            v = self.to_v(context)
            q = self.reshape_heads_to_batch_dim(q)
            k = self.reshape_heads_to_batch_dim(k)
            v = self.reshape_heads_to_batch_dim(v)
            sim = torch.einsum("b i d, b j d -> b i j", q, k) * self.scale # q: torch.Size([128, 4096, 40]); k: torch.Size([64, 77, 40])

            if mask is not None:
                mask = mask.reshape(batch_size, -1)
                max_neg_value = -torch.finfo(sim.dtype).max
                mask = mask[:, None, :].repeat(h, 1, 1)
                sim.masked_fill_(~mask, max_neg_value)

            attn = torch.exp(sim-torch.max(sim)) / torch.sum(torch.exp(sim-torch.max(sim)), axis=-1).unsqueeze(-1)
            attn = controller(attn, is_cross, place_in_unet)
            out = torch.einsum("b i j, b j d -> b i d", attn, v)
            out = self.reshape_batch_dim_to_heads(out)
            return to_out(out)

        return forward

    class DummyController:

        def __call__(self, *args):
            return args[0]

        def __init__(self):
            self.num_att_layers = 0

    if controller is None:
        controller = DummyController()

    def register_recr(net_, count, place_in_unet):
        if net_.__class__.__name__ == 'CrossAttention':
            net_.forward = ca_forward(net_, place_in_unet)
            return count + 1
        elif hasattr(net_, 'children'):
            for net__ in net_.children():
                count = register_recr(net__, count, place_in_unet)
        return count

    cross_att_count = 0
    sub_nets = model.unet.named_children()
    for net in sub_nets:
        if "down" in net[0]:
            cross_att_count += register_recr(net[1], 0, "down")
        elif "up" in net[0]:
            cross_att_count += register_recr(net[1], 0, "up")
        elif "mid" in net[0]:
            cross_att_count += register_recr(net[1], 0, "mid")

    controller.num_att_layers = cross_att_count

    
def get_word_inds(text: str, word_place: int, tokenizer):
    split_text = text.split(" ")
    if type(word_place) is str:
        word_place = [i for i, word in enumerate(split_text) if word_place == word]
    elif type(word_place) is int:
        word_place = [word_place]
    out = []
    if len(word_place) > 0:
        words_encode = [tokenizer.decode([item]).strip("#") for item in tokenizer.encode(text)][1:-1]
        cur_len, ptr = 0, 0

        for i in range(len(words_encode)):
            cur_len += len(words_encode[i])
            if ptr in word_place:
                out.append(i + 1)
            if cur_len >= len(split_text[ptr]):
                ptr += 1
                cur_len = 0
    return np.array(out)


def update_alpha_time_word(alpha, bounds: Union[float, Tuple[float, float]], prompt_ind: int,
                           word_inds: Optional[torch.Tensor]=None):
    if type(bounds) is float:
        bounds = 0, bounds
    start, end = int(bounds[0] * alpha.shape[0]), int(bounds[1] * alpha.shape[0])
    if word_inds is None:
        word_inds = torch.arange(alpha.shape[2])
    alpha[: start, prompt_ind, word_inds] = 0
    alpha[start: end, prompt_ind, word_inds] = 1
    alpha[end:, prompt_ind, word_inds] = 0
    return alpha


def get_time_words_attention_alpha(prompts, num_steps,
                                   cross_replace_steps: Union[float, Dict[str, Tuple[float, float]]],
                                   tokenizer, max_num_words=77):
    if type(cross_replace_steps) is not dict:
        cross_replace_steps = {"default_": cross_replace_steps}
    if "default_" not in cross_replace_steps:
        cross_replace_steps["default_"] = (0., 1.)
    alpha_time_words = torch.zeros(num_steps + 1, len(prompts) - 1, max_num_words)
    for i in range(len(prompts) - 1): # 2
        alpha_time_words = update_alpha_time_word(alpha_time_words, cross_replace_steps["default_"], # {'default_': 0.8}
                                                  i)
    for key, item in cross_replace_steps.items():
        if key != "default_":
             inds = [get_word_inds(prompts[i], key, tokenizer) for i in range(1, len(prompts))]
             for i, ind in enumerate(inds):
                 if len(ind) > 0:
                    alpha_time_words = update_alpha_time_word(alpha_time_words, item, i, ind)
    alpha_time_words = alpha_time_words.reshape(num_steps + 1, len(prompts) - 1, 1, 1, max_num_words)
    return alpha_time_words