Video-P2P-Demo / run_tuning.py
ShaoTengLiu
initial
edc0f20
raw
history blame
15.5 kB
import argparse
import datetime
import logging
import inspect
import math
import os
from typing import Dict, Optional, Tuple
from omegaconf import OmegaConf
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
import diffusers
import transformers
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from diffusers import AutoencoderKL, DDPMScheduler, DDIMScheduler
from diffusers.optimization import get_scheduler
from diffusers.utils import check_min_version
from diffusers.utils.import_utils import is_xformers_available
from tqdm.auto import tqdm
from transformers import CLIPTextModel, CLIPTokenizer
from tuneavideo.models.unet import UNet3DConditionModel
from tuneavideo.data.dataset import TuneAVideoDataset
from tuneavideo.pipelines.pipeline_tuneavideo import TuneAVideoPipeline
from tuneavideo.util import save_videos_grid, ddim_inversion
from einops import rearrange
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.10.0.dev0")
logger = get_logger(__name__, log_level="INFO")
def main(
pretrained_model_path: str,
output_dir: str,
train_data: Dict,
validation_data: Dict,
validation_steps: int = 100,
trainable_modules: Tuple[str] = (
"attn1.to_q",
"attn2.to_q",
"attn_temp",
),
train_batch_size: int = 1,
max_train_steps: int = 500,
learning_rate: float = 3e-5,
scale_lr: bool = False,
lr_scheduler: str = "constant",
lr_warmup_steps: int = 0,
adam_beta1: float = 0.9,
adam_beta2: float = 0.999,
adam_weight_decay: float = 1e-2,
adam_epsilon: float = 1e-08,
max_grad_norm: float = 1.0,
gradient_accumulation_steps: int = 1,
gradient_checkpointing: bool = True,
checkpointing_steps: int = 500,
resume_from_checkpoint: Optional[str] = None,
mixed_precision: Optional[str] = "fp16",
use_8bit_adam: bool = False,
enable_xformers_memory_efficient_attention: bool = True,
seed: Optional[int] = None,
):
*_, config = inspect.getargvalues(inspect.currentframe())
accelerator = Accelerator(
gradient_accumulation_steps=gradient_accumulation_steps,
mixed_precision=mixed_precision,
)
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state, main_process_only=False)
if accelerator.is_local_main_process:
transformers.utils.logging.set_verbosity_warning()
diffusers.utils.logging.set_verbosity_info()
else:
transformers.utils.logging.set_verbosity_error()
diffusers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
if seed is not None:
set_seed(seed)
# Handle the output folder creation
if accelerator.is_main_process:
# now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
# output_dir = os.path.join(output_dir, now)
os.makedirs(output_dir, exist_ok=True)
os.makedirs(f"{output_dir}/samples", exist_ok=True)
os.makedirs(f"{output_dir}/inv_latents", exist_ok=True)
OmegaConf.save(config, os.path.join(output_dir, 'config.yaml'))
# Load scheduler, tokenizer and models.
noise_scheduler = DDPMScheduler.from_pretrained(pretrained_model_path, subfolder="scheduler")
tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer")
text_encoder = CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder")
vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae")
unet = UNet3DConditionModel.from_pretrained_2d(pretrained_model_path, subfolder="unet")
# Freeze vae and text_encoder
vae.requires_grad_(False)
text_encoder.requires_grad_(False)
unet.requires_grad_(False)
for name, module in unet.named_modules():
if name.endswith(tuple(trainable_modules)):
for params in module.parameters():
params.requires_grad = True
if enable_xformers_memory_efficient_attention:
if is_xformers_available():
unet.enable_xformers_memory_efficient_attention()
else:
raise ValueError("xformers is not available. Make sure it is installed correctly")
if gradient_checkpointing:
unet.enable_gradient_checkpointing()
if scale_lr:
learning_rate = (
learning_rate * gradient_accumulation_steps * train_batch_size * accelerator.num_processes
)
# Initialize the optimizer
if use_8bit_adam:
try:
import bitsandbytes as bnb
except ImportError:
raise ImportError(
"Please install bitsandbytes to use 8-bit Adam. You can do so by running `pip install bitsandbytes`"
)
optimizer_cls = bnb.optim.AdamW8bit
else:
optimizer_cls = torch.optim.AdamW
optimizer = optimizer_cls(
unet.parameters(),
lr=learning_rate,
betas=(adam_beta1, adam_beta2),
weight_decay=adam_weight_decay,
eps=adam_epsilon,
)
# Get the training dataset
train_dataset = TuneAVideoDataset(**train_data)
# Preprocessing the dataset
train_dataset.prompt_ids = tokenizer(
train_dataset.prompt, max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt"
).input_ids[0]
# DataLoaders creation:
train_dataloader = torch.utils.data.DataLoader(
train_dataset, batch_size=train_batch_size
)
# Get the validation pipeline
validation_pipeline = TuneAVideoPipeline(
vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet,
scheduler=DDIMScheduler.from_pretrained(pretrained_model_path, subfolder="scheduler")
)
validation_pipeline.enable_vae_slicing()
ddim_inv_scheduler = DDIMScheduler.from_pretrained(pretrained_model_path, subfolder='scheduler')
ddim_inv_scheduler.set_timesteps(validation_data.num_inv_steps)
# Scheduler
lr_scheduler = get_scheduler(
lr_scheduler,
optimizer=optimizer,
num_warmup_steps=lr_warmup_steps * gradient_accumulation_steps,
num_training_steps=max_train_steps * gradient_accumulation_steps,
)
# Prepare everything with our `accelerator`.
unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
unet, optimizer, train_dataloader, lr_scheduler
)
# For mixed precision training we cast the text_encoder and vae weights to half-precision
# as these models are only used for inference, keeping weights in full precision is not required.
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
# Move text_encode and vae to gpu and cast to weight_dtype
text_encoder.to(accelerator.device, dtype=weight_dtype)
vae.to(accelerator.device, dtype=weight_dtype)
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / gradient_accumulation_steps)
# Afterwards we recalculate our number of training epochs
num_train_epochs = math.ceil(max_train_steps / num_update_steps_per_epoch)
# We need to initialize the trackers we use, and also store our configuration.
# The trackers initializes automatically on the main process.
if accelerator.is_main_process:
accelerator.init_trackers("text2video-fine-tune")
# Train!
total_batch_size = train_batch_size * accelerator.num_processes * gradient_accumulation_steps
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num Epochs = {num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {train_batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {max_train_steps}")
global_step = 0
first_epoch = 0
# Potentially load in the weights and states from a previous save
if resume_from_checkpoint:
if resume_from_checkpoint != "latest":
path = os.path.basename(resume_from_checkpoint)
else:
# Get the most recent checkpoint
dirs = os.listdir(output_dir)
dirs = [d for d in dirs if d.startswith("checkpoint")]
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
path = dirs[-1]
accelerator.print(f"Resuming from checkpoint {path}")
accelerator.load_state(os.path.join(output_dir, path))
global_step = int(path.split("-")[1])
first_epoch = global_step // num_update_steps_per_epoch
resume_step = global_step % num_update_steps_per_epoch
# Only show the progress bar once on each machine.
progress_bar = tqdm(range(global_step, max_train_steps), disable=not accelerator.is_local_main_process)
progress_bar.set_description("Steps")
for epoch in range(first_epoch, num_train_epochs):
unet.train()
train_loss = 0.0
for step, batch in enumerate(train_dataloader):
# Skip steps until we reach the resumed step
if resume_from_checkpoint and epoch == first_epoch and step < resume_step:
if step % gradient_accumulation_steps == 0:
progress_bar.update(1)
continue
with accelerator.accumulate(unet):
# Convert videos to latent space
pixel_values = batch["pixel_values"].to(weight_dtype)
video_length = pixel_values.shape[1]
pixel_values = rearrange(pixel_values, "b f c h w -> (b f) c h w")
latents = vae.encode(pixel_values).latent_dist.sample()
latents = rearrange(latents, "(b f) c h w -> b c f h w", f=video_length)
latents = latents * 0.18215
# Sample noise that we'll add to the latents
noise = torch.randn_like(latents)
bsz = latents.shape[0]
# Sample a random timestep for each video
timesteps = torch.randint(0, noise_scheduler.num_train_timesteps, (bsz,), device=latents.device)
timesteps = timesteps.long()
# Add noise to the latents according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
# Get the text embedding for conditioning
encoder_hidden_states = text_encoder(batch["prompt_ids"])[0]
# Get the target for loss depending on the prediction type
if noise_scheduler.prediction_type == "epsilon":
target = noise
elif noise_scheduler.prediction_type == "v_prediction":
target = noise_scheduler.get_velocity(latents, noise, timesteps)
else:
raise ValueError(f"Unknown prediction type {noise_scheduler.prediction_type}")
# Predict the noise residual and compute loss
model_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
# Gather the losses across all processes for logging (if we use distributed training).
avg_loss = accelerator.gather(loss.repeat(train_batch_size)).mean()
train_loss += avg_loss.item() / gradient_accumulation_steps
# Backpropagate
accelerator.backward(loss)
if accelerator.sync_gradients:
accelerator.clip_grad_norm_(unet.parameters(), max_grad_norm)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
accelerator.log({"train_loss": train_loss}, step=global_step)
train_loss = 0.0
if global_step % checkpointing_steps == 0:
if accelerator.is_main_process:
save_path = os.path.join(output_dir, f"checkpoint-{global_step}")
accelerator.save_state(save_path)
logger.info(f"Saved state to {save_path}")
if global_step % validation_steps == 0:
if accelerator.is_main_process:
samples = []
generator = torch.Generator(device=latents.device)
generator.manual_seed(seed)
ddim_inv_latent = None
if validation_data.use_inv_latent:
inv_latents_path = os.path.join(output_dir, f"inv_latents/ddim_latent-{global_step}.pt")
ddim_inv_latent = ddim_inversion(
validation_pipeline, ddim_inv_scheduler, video_latent=latents,
num_inv_steps=validation_data.num_inv_steps, prompt="")[-1].to(weight_dtype)
torch.save(ddim_inv_latent, inv_latents_path)
for idx, prompt in enumerate(validation_data.prompts):
sample = validation_pipeline(prompt, generator=generator, latents=ddim_inv_latent,
**validation_data).videos
save_videos_grid(sample, f"{output_dir}/samples/sample-{global_step}/{prompt}.gif")
samples.append(sample)
samples = torch.concat(samples)
save_path = f"{output_dir}/samples/sample-{global_step}.gif"
save_videos_grid(samples, save_path)
logger.info(f"Saved samples to {save_path}")
logs = {"step_loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
progress_bar.set_postfix(**logs)
if global_step >= max_train_steps:
break
# Create the pipeline using the trained modules and save it.
accelerator.wait_for_everyone()
if accelerator.is_main_process:
unet = accelerator.unwrap_model(unet)
pipeline = TuneAVideoPipeline.from_pretrained(
pretrained_model_path,
text_encoder=text_encoder,
vae=vae,
unet=unet,
)
pipeline.save_pretrained(output_dir)
accelerator.end_training()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, default="./configs/tuneavideo.yaml")
args = parser.parse_args()
main(**OmegaConf.load(args.config))