Spaces:
Runtime error
Runtime error
import argparse | |
import datetime | |
import logging | |
import inspect | |
import math | |
import os | |
from typing import Dict, Optional, Tuple | |
from omegaconf import OmegaConf | |
import torch | |
import torch.nn.functional as F | |
import torch.utils.checkpoint | |
import diffusers | |
import transformers | |
from accelerate import Accelerator | |
from accelerate.logging import get_logger | |
from accelerate.utils import set_seed | |
from diffusers import AutoencoderKL, DDPMScheduler, DDIMScheduler | |
from diffusers.optimization import get_scheduler | |
from diffusers.utils import check_min_version | |
from diffusers.utils.import_utils import is_xformers_available | |
from tqdm.auto import tqdm | |
from transformers import CLIPTextModel, CLIPTokenizer | |
from tuneavideo.models.unet import UNet3DConditionModel | |
from tuneavideo.data.dataset import TuneAVideoDataset | |
from tuneavideo.pipelines.pipeline_tuneavideo import TuneAVideoPipeline | |
from tuneavideo.util import save_videos_grid, ddim_inversion | |
from einops import rearrange | |
# Will error if the minimal version of diffusers is not installed. Remove at your own risks. | |
check_min_version("0.10.0.dev0") | |
logger = get_logger(__name__, log_level="INFO") | |
def main( | |
pretrained_model_path: str, | |
output_dir: str, | |
train_data: Dict, | |
validation_data: Dict, | |
validation_steps: int = 100, | |
trainable_modules: Tuple[str] = ( | |
"attn1.to_q", | |
"attn2.to_q", | |
"attn_temp", | |
), | |
train_batch_size: int = 1, | |
max_train_steps: int = 500, | |
learning_rate: float = 3e-5, | |
scale_lr: bool = False, | |
lr_scheduler: str = "constant", | |
lr_warmup_steps: int = 0, | |
adam_beta1: float = 0.9, | |
adam_beta2: float = 0.999, | |
adam_weight_decay: float = 1e-2, | |
adam_epsilon: float = 1e-08, | |
max_grad_norm: float = 1.0, | |
gradient_accumulation_steps: int = 1, | |
gradient_checkpointing: bool = True, | |
checkpointing_steps: int = 500, | |
resume_from_checkpoint: Optional[str] = None, | |
mixed_precision: Optional[str] = "fp16", | |
use_8bit_adam: bool = False, | |
enable_xformers_memory_efficient_attention: bool = True, | |
seed: Optional[int] = None, | |
): | |
*_, config = inspect.getargvalues(inspect.currentframe()) | |
accelerator = Accelerator( | |
gradient_accumulation_steps=gradient_accumulation_steps, | |
mixed_precision=mixed_precision, | |
) | |
# Make one log on every process with the configuration for debugging. | |
logging.basicConfig( | |
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
datefmt="%m/%d/%Y %H:%M:%S", | |
level=logging.INFO, | |
) | |
logger.info(accelerator.state, main_process_only=False) | |
if accelerator.is_local_main_process: | |
transformers.utils.logging.set_verbosity_warning() | |
diffusers.utils.logging.set_verbosity_info() | |
else: | |
transformers.utils.logging.set_verbosity_error() | |
diffusers.utils.logging.set_verbosity_error() | |
# If passed along, set the training seed now. | |
if seed is not None: | |
set_seed(seed) | |
# Handle the output folder creation | |
if accelerator.is_main_process: | |
# now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S") | |
# output_dir = os.path.join(output_dir, now) | |
os.makedirs(output_dir, exist_ok=True) | |
os.makedirs(f"{output_dir}/samples", exist_ok=True) | |
os.makedirs(f"{output_dir}/inv_latents", exist_ok=True) | |
OmegaConf.save(config, os.path.join(output_dir, 'config.yaml')) | |
# Load scheduler, tokenizer and models. | |
noise_scheduler = DDPMScheduler.from_pretrained(pretrained_model_path, subfolder="scheduler") | |
tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer") | |
text_encoder = CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder") | |
vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae") | |
unet = UNet3DConditionModel.from_pretrained_2d(pretrained_model_path, subfolder="unet") | |
# Freeze vae and text_encoder | |
vae.requires_grad_(False) | |
text_encoder.requires_grad_(False) | |
unet.requires_grad_(False) | |
for name, module in unet.named_modules(): | |
if name.endswith(tuple(trainable_modules)): | |
for params in module.parameters(): | |
params.requires_grad = True | |
if enable_xformers_memory_efficient_attention: | |
if is_xformers_available(): | |
unet.enable_xformers_memory_efficient_attention() | |
else: | |
raise ValueError("xformers is not available. Make sure it is installed correctly") | |
if gradient_checkpointing: | |
unet.enable_gradient_checkpointing() | |
if scale_lr: | |
learning_rate = ( | |
learning_rate * gradient_accumulation_steps * train_batch_size * accelerator.num_processes | |
) | |
# Initialize the optimizer | |
if use_8bit_adam: | |
try: | |
import bitsandbytes as bnb | |
except ImportError: | |
raise ImportError( | |
"Please install bitsandbytes to use 8-bit Adam. You can do so by running `pip install bitsandbytes`" | |
) | |
optimizer_cls = bnb.optim.AdamW8bit | |
else: | |
optimizer_cls = torch.optim.AdamW | |
optimizer = optimizer_cls( | |
unet.parameters(), | |
lr=learning_rate, | |
betas=(adam_beta1, adam_beta2), | |
weight_decay=adam_weight_decay, | |
eps=adam_epsilon, | |
) | |
# Get the training dataset | |
train_dataset = TuneAVideoDataset(**train_data) | |
# Preprocessing the dataset | |
train_dataset.prompt_ids = tokenizer( | |
train_dataset.prompt, max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt" | |
).input_ids[0] | |
# DataLoaders creation: | |
train_dataloader = torch.utils.data.DataLoader( | |
train_dataset, batch_size=train_batch_size | |
) | |
# Get the validation pipeline | |
validation_pipeline = TuneAVideoPipeline( | |
vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, | |
scheduler=DDIMScheduler.from_pretrained(pretrained_model_path, subfolder="scheduler") | |
) | |
validation_pipeline.enable_vae_slicing() | |
ddim_inv_scheduler = DDIMScheduler.from_pretrained(pretrained_model_path, subfolder='scheduler') | |
ddim_inv_scheduler.set_timesteps(validation_data.num_inv_steps) | |
# Scheduler | |
lr_scheduler = get_scheduler( | |
lr_scheduler, | |
optimizer=optimizer, | |
num_warmup_steps=lr_warmup_steps * gradient_accumulation_steps, | |
num_training_steps=max_train_steps * gradient_accumulation_steps, | |
) | |
# Prepare everything with our `accelerator`. | |
unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( | |
unet, optimizer, train_dataloader, lr_scheduler | |
) | |
# For mixed precision training we cast the text_encoder and vae weights to half-precision | |
# as these models are only used for inference, keeping weights in full precision is not required. | |
weight_dtype = torch.float32 | |
if accelerator.mixed_precision == "fp16": | |
weight_dtype = torch.float16 | |
elif accelerator.mixed_precision == "bf16": | |
weight_dtype = torch.bfloat16 | |
# Move text_encode and vae to gpu and cast to weight_dtype | |
text_encoder.to(accelerator.device, dtype=weight_dtype) | |
vae.to(accelerator.device, dtype=weight_dtype) | |
# We need to recalculate our total training steps as the size of the training dataloader may have changed. | |
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / gradient_accumulation_steps) | |
# Afterwards we recalculate our number of training epochs | |
num_train_epochs = math.ceil(max_train_steps / num_update_steps_per_epoch) | |
# We need to initialize the trackers we use, and also store our configuration. | |
# The trackers initializes automatically on the main process. | |
if accelerator.is_main_process: | |
accelerator.init_trackers("text2video-fine-tune") | |
# Train! | |
total_batch_size = train_batch_size * accelerator.num_processes * gradient_accumulation_steps | |
logger.info("***** Running training *****") | |
logger.info(f" Num examples = {len(train_dataset)}") | |
logger.info(f" Num Epochs = {num_train_epochs}") | |
logger.info(f" Instantaneous batch size per device = {train_batch_size}") | |
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") | |
logger.info(f" Gradient Accumulation steps = {gradient_accumulation_steps}") | |
logger.info(f" Total optimization steps = {max_train_steps}") | |
global_step = 0 | |
first_epoch = 0 | |
# Potentially load in the weights and states from a previous save | |
if resume_from_checkpoint: | |
if resume_from_checkpoint != "latest": | |
path = os.path.basename(resume_from_checkpoint) | |
else: | |
# Get the most recent checkpoint | |
dirs = os.listdir(output_dir) | |
dirs = [d for d in dirs if d.startswith("checkpoint")] | |
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) | |
path = dirs[-1] | |
accelerator.print(f"Resuming from checkpoint {path}") | |
accelerator.load_state(os.path.join(output_dir, path)) | |
global_step = int(path.split("-")[1]) | |
first_epoch = global_step // num_update_steps_per_epoch | |
resume_step = global_step % num_update_steps_per_epoch | |
# Only show the progress bar once on each machine. | |
progress_bar = tqdm(range(global_step, max_train_steps), disable=not accelerator.is_local_main_process) | |
progress_bar.set_description("Steps") | |
for epoch in range(first_epoch, num_train_epochs): | |
unet.train() | |
train_loss = 0.0 | |
for step, batch in enumerate(train_dataloader): | |
# Skip steps until we reach the resumed step | |
if resume_from_checkpoint and epoch == first_epoch and step < resume_step: | |
if step % gradient_accumulation_steps == 0: | |
progress_bar.update(1) | |
continue | |
with accelerator.accumulate(unet): | |
# Convert videos to latent space | |
pixel_values = batch["pixel_values"].to(weight_dtype) | |
video_length = pixel_values.shape[1] | |
pixel_values = rearrange(pixel_values, "b f c h w -> (b f) c h w") | |
latents = vae.encode(pixel_values).latent_dist.sample() | |
latents = rearrange(latents, "(b f) c h w -> b c f h w", f=video_length) | |
latents = latents * 0.18215 | |
# Sample noise that we'll add to the latents | |
noise = torch.randn_like(latents) | |
bsz = latents.shape[0] | |
# Sample a random timestep for each video | |
timesteps = torch.randint(0, noise_scheduler.num_train_timesteps, (bsz,), device=latents.device) | |
timesteps = timesteps.long() | |
# Add noise to the latents according to the noise magnitude at each timestep | |
# (this is the forward diffusion process) | |
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) | |
# Get the text embedding for conditioning | |
encoder_hidden_states = text_encoder(batch["prompt_ids"])[0] | |
# Get the target for loss depending on the prediction type | |
if noise_scheduler.prediction_type == "epsilon": | |
target = noise | |
elif noise_scheduler.prediction_type == "v_prediction": | |
target = noise_scheduler.get_velocity(latents, noise, timesteps) | |
else: | |
raise ValueError(f"Unknown prediction type {noise_scheduler.prediction_type}") | |
# Predict the noise residual and compute loss | |
model_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample | |
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean") | |
# Gather the losses across all processes for logging (if we use distributed training). | |
avg_loss = accelerator.gather(loss.repeat(train_batch_size)).mean() | |
train_loss += avg_loss.item() / gradient_accumulation_steps | |
# Backpropagate | |
accelerator.backward(loss) | |
if accelerator.sync_gradients: | |
accelerator.clip_grad_norm_(unet.parameters(), max_grad_norm) | |
optimizer.step() | |
lr_scheduler.step() | |
optimizer.zero_grad() | |
# Checks if the accelerator has performed an optimization step behind the scenes | |
if accelerator.sync_gradients: | |
progress_bar.update(1) | |
global_step += 1 | |
accelerator.log({"train_loss": train_loss}, step=global_step) | |
train_loss = 0.0 | |
if global_step % checkpointing_steps == 0: | |
if accelerator.is_main_process: | |
save_path = os.path.join(output_dir, f"checkpoint-{global_step}") | |
accelerator.save_state(save_path) | |
logger.info(f"Saved state to {save_path}") | |
if global_step % validation_steps == 0: | |
if accelerator.is_main_process: | |
samples = [] | |
generator = torch.Generator(device=latents.device) | |
generator.manual_seed(seed) | |
ddim_inv_latent = None | |
if validation_data.use_inv_latent: | |
inv_latents_path = os.path.join(output_dir, f"inv_latents/ddim_latent-{global_step}.pt") | |
ddim_inv_latent = ddim_inversion( | |
validation_pipeline, ddim_inv_scheduler, video_latent=latents, | |
num_inv_steps=validation_data.num_inv_steps, prompt="")[-1].to(weight_dtype) | |
torch.save(ddim_inv_latent, inv_latents_path) | |
for idx, prompt in enumerate(validation_data.prompts): | |
sample = validation_pipeline(prompt, generator=generator, latents=ddim_inv_latent, | |
**validation_data).videos | |
save_videos_grid(sample, f"{output_dir}/samples/sample-{global_step}/{prompt}.gif") | |
samples.append(sample) | |
samples = torch.concat(samples) | |
save_path = f"{output_dir}/samples/sample-{global_step}.gif" | |
save_videos_grid(samples, save_path) | |
logger.info(f"Saved samples to {save_path}") | |
logs = {"step_loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} | |
progress_bar.set_postfix(**logs) | |
if global_step >= max_train_steps: | |
break | |
# Create the pipeline using the trained modules and save it. | |
accelerator.wait_for_everyone() | |
if accelerator.is_main_process: | |
unet = accelerator.unwrap_model(unet) | |
pipeline = TuneAVideoPipeline.from_pretrained( | |
pretrained_model_path, | |
text_encoder=text_encoder, | |
vae=vae, | |
unet=unet, | |
) | |
pipeline.save_pretrained(output_dir) | |
accelerator.end_training() | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--config", type=str, default="./configs/tuneavideo.yaml") | |
args = parser.parse_args() | |
main(**OmegaConf.load(args.config)) | |