ShaoTengLiu
initial
edc0f20
raw
history blame
1.89 kB
import decord
decord.bridge.set_bridge('torch')
from torch.utils.data import Dataset
from einops import rearrange
import os
from PIL import Image
import numpy as np
class TuneAVideoDataset(Dataset):
def __init__(
self,
video_path: str,
prompt: str,
width: int = 512,
height: int = 512,
n_sample_frames: int = 8,
sample_start_idx: int = 0,
sample_frame_rate: int = 1,
):
self.video_path = video_path
self.prompt = prompt
self.prompt_ids = None
self.uncond_prompt_ids = None
self.width = width
self.height = height
self.n_sample_frames = n_sample_frames
self.sample_start_idx = sample_start_idx
self.sample_frame_rate = sample_frame_rate
if 'mp4' not in self.video_path:
self.images = []
for file in sorted(os.listdir(self.video_path), key=lambda x: int(x[:-4])):
if file.endswith('jpg'):
self.images.append(np.asarray(Image.open(os.path.join(self.video_path, file)).convert('RGB').resize((self.width, self.height))))
self.images = np.stack(self.images)
def __len__(self):
return 1
def __getitem__(self, index):
# load and sample video frames
if 'mp4' in self.video_path:
vr = decord.VideoReader(self.video_path, width=self.width, height=self.height)
sample_index = list(range(self.sample_start_idx, len(vr), self.sample_frame_rate))[:self.n_sample_frames]
video = vr.get_batch(sample_index)
else:
video = self.images[:self.n_sample_frames]
video = rearrange(video, "f h w c -> f c h w")
example = {
"pixel_values": (video / 127.5 - 1.0),
"prompt_ids": self.prompt_ids,
}
return example