Spaces:
Running
Running
add-support-for-new-vidore-result-format
#2
by
tonywu71
- opened
- app.py +17 -10
- data/model_handler.py +23 -17
- ruff.toml +7 -0
app.py
CHANGED
@@ -5,10 +5,10 @@ from data.model_handler import ModelHandler
|
|
5 |
|
6 |
METRICS = ["ndcg_at_5", "recall_at_1"]
|
7 |
|
8 |
-
def main():
|
9 |
model_handler = ModelHandler()
|
10 |
initial_metric = "ndcg_at_5"
|
11 |
-
|
12 |
data = model_handler.get_vidore_data(initial_metric)
|
13 |
data = add_rank_and_format(data)
|
14 |
|
@@ -48,7 +48,7 @@ def main():
|
|
48 |
gr.Markdown(
|
49 |
"""
|
50 |
Visual Document Retrieval Benchmark leaderboard. To submit results, refer to the corresponding tab.
|
51 |
-
|
52 |
Refer to the [ColPali paper](https://arxiv.org/abs/2407.01449) for details on metrics, tasks and models.
|
53 |
"""
|
54 |
)
|
@@ -125,9 +125,10 @@ def main():
|
|
125 |
|
126 |
1. **Evaluate your model**:
|
127 |
- Follow the evaluation script provided in the [ViDoRe GitHub repository](https://github.com/illuin-tech/vidore-benchmark/)
|
128 |
-
|
129 |
2. **Format your submission file**:
|
130 |
-
- The submission file should automatically be generated, and named `results.json` with the
|
|
|
131 |
```json
|
132 |
{
|
133 |
"dataset_name_1": {
|
@@ -142,13 +143,19 @@ def main():
|
|
142 |
},
|
143 |
}
|
144 |
```
|
145 |
-
- The dataset names should be the same as the ViDoRe dataset names listed in the following
|
146 |
-
|
|
|
147 |
3. **Submit your model**:
|
148 |
- Create a public HuggingFace model repository with your model.
|
149 |
-
- Add the tag `vidore` to your model in the metadata of the model card and place the
|
150 |
-
|
151 |
-
|
|
|
|
|
|
|
|
|
|
|
152 |
"""
|
153 |
)
|
154 |
|
|
|
5 |
|
6 |
METRICS = ["ndcg_at_5", "recall_at_1"]
|
7 |
|
8 |
+
def main():
|
9 |
model_handler = ModelHandler()
|
10 |
initial_metric = "ndcg_at_5"
|
11 |
+
|
12 |
data = model_handler.get_vidore_data(initial_metric)
|
13 |
data = add_rank_and_format(data)
|
14 |
|
|
|
48 |
gr.Markdown(
|
49 |
"""
|
50 |
Visual Document Retrieval Benchmark leaderboard. To submit results, refer to the corresponding tab.
|
51 |
+
|
52 |
Refer to the [ColPali paper](https://arxiv.org/abs/2407.01449) for details on metrics, tasks and models.
|
53 |
"""
|
54 |
)
|
|
|
125 |
|
126 |
1. **Evaluate your model**:
|
127 |
- Follow the evaluation script provided in the [ViDoRe GitHub repository](https://github.com/illuin-tech/vidore-benchmark/)
|
128 |
+
|
129 |
2. **Format your submission file**:
|
130 |
+
- The submission file should automatically be generated, and named `results.json` with the
|
131 |
+
following structure:
|
132 |
```json
|
133 |
{
|
134 |
"dataset_name_1": {
|
|
|
143 |
},
|
144 |
}
|
145 |
```
|
146 |
+
- The dataset names should be the same as the ViDoRe dataset names listed in the following
|
147 |
+
collection: [ViDoRe Benchmark](https://huggingface.co/collections/vidore/vidore-benchmark-667173f98e70a1c0fa4db00d).
|
148 |
+
|
149 |
3. **Submit your model**:
|
150 |
- Create a public HuggingFace model repository with your model.
|
151 |
+
- Add the tag `vidore` to your model in the metadata of the model card and place the
|
152 |
+
`results.json` file at the root.
|
153 |
+
|
154 |
+
And you're done! Your model will appear on the leaderboard when you click refresh! Once the space
|
155 |
+
gets rebooted, it will appear on startup.
|
156 |
+
|
157 |
+
Note: For proper hyperlink redirection, please ensure that your model repository name is in
|
158 |
+
kebab-case, e.g. `my-model-name`.
|
159 |
"""
|
160 |
)
|
161 |
|
data/model_handler.py
CHANGED
@@ -1,12 +1,15 @@
|
|
1 |
import json
|
2 |
import os
|
3 |
-
from typing import Dict
|
4 |
-
|
5 |
import pandas as pd
|
6 |
-
from
|
|
|
|
|
7 |
|
8 |
BLOCKLIST = ["impactframes"]
|
9 |
|
|
|
10 |
class ModelHandler:
|
11 |
def __init__(self, model_infos_path="model_infos.json"):
|
12 |
self.api = HfApi()
|
@@ -23,26 +26,28 @@ class ModelHandler:
|
|
23 |
with open(self.model_infos_path, "w") as f:
|
24 |
json.dump(self.model_infos, f)
|
25 |
|
|
|
|
|
|
|
26 |
def get_vidore_data(self, metric="ndcg_at_5"):
|
27 |
models = self.api.list_models(filter="vidore")
|
28 |
repositories = [model.modelId for model in models] # type: ignore
|
29 |
|
30 |
for repo_id in repositories:
|
31 |
-
org_name = repo_id.split(
|
32 |
if org_name in BLOCKLIST:
|
33 |
continue
|
34 |
-
|
35 |
-
files = [f for f in self.api.list_repo_files(repo_id) if f.endswith('_metrics.json') or f == 'results.json']
|
36 |
|
37 |
-
|
|
|
38 |
if len(files) == 0:
|
39 |
continue
|
40 |
else:
|
41 |
for file in files:
|
42 |
-
if file.endswith(
|
43 |
-
model_name = repo_id.replace(
|
44 |
else:
|
45 |
-
model_name = file.split(
|
46 |
|
47 |
if model_name not in self.model_infos:
|
48 |
readme_path = hf_hub_download(repo_id, filename="README.md")
|
@@ -53,15 +58,16 @@ class ModelHandler:
|
|
53 |
with open(result_path) as f:
|
54 |
results = json.load(f)
|
55 |
|
56 |
-
|
57 |
-
|
|
|
58 |
|
59 |
self.model_infos[model_name] = {"meta": meta, "results": results}
|
60 |
except Exception as e:
|
61 |
print(f"Error loading {model_name} - {e}")
|
62 |
continue
|
63 |
|
64 |
-
#self._save_model_infos()
|
65 |
|
66 |
model_res = {}
|
67 |
if len(self.model_infos) > 0:
|
@@ -69,7 +75,7 @@ class ModelHandler:
|
|
69 |
res = self.model_infos[model]["results"]
|
70 |
dataset_res = {}
|
71 |
for dataset in res.keys():
|
72 |
-
#for each keyword check if it is in the dataset name if not continue
|
73 |
if not any(keyword in dataset for keyword in VIDORE_DATASETS_KEYWORDS):
|
74 |
print(f"{dataset} not found in ViDoRe datasets. Skipping ...")
|
75 |
continue
|
@@ -77,9 +83,9 @@ class ModelHandler:
|
|
77 |
dataset_nickname = get_datasets_nickname(dataset)
|
78 |
dataset_res[dataset_nickname] = res[dataset][metric]
|
79 |
model_res[model] = dataset_res
|
80 |
-
|
81 |
df = pd.DataFrame(model_res).T
|
82 |
-
|
83 |
return df
|
84 |
return pd.DataFrame()
|
85 |
|
@@ -104,7 +110,7 @@ class ModelHandler:
|
|
104 |
df.insert(len(df.columns) - len(cols_to_rank), "Average", df[cols_to_rank].mean(axis=1, skipna=False))
|
105 |
df.sort_values("Average", ascending=False, inplace=True)
|
106 |
df.insert(0, "Rank", list(range(1, len(df) + 1)))
|
107 |
-
#multiply values by 100 if they are floats and round to 1 decimal place
|
108 |
for col in df.columns:
|
109 |
if df[col].dtype == "float64":
|
110 |
df[col] = df[col].apply(lambda x: round(x * 100, 1))
|
|
|
1 |
import json
|
2 |
import os
|
3 |
+
from typing import Any, Dict
|
4 |
+
|
5 |
import pandas as pd
|
6 |
+
from huggingface_hub import HfApi, hf_hub_download, metadata_load
|
7 |
+
|
8 |
+
from .dataset_handler import VIDORE_DATASETS_KEYWORDS, get_datasets_nickname
|
9 |
|
10 |
BLOCKLIST = ["impactframes"]
|
11 |
|
12 |
+
|
13 |
class ModelHandler:
|
14 |
def __init__(self, model_infos_path="model_infos.json"):
|
15 |
self.api = HfApi()
|
|
|
26 |
with open(self.model_infos_path, "w") as f:
|
27 |
json.dump(self.model_infos, f)
|
28 |
|
29 |
+
def _are_results_in_new_vidore_format(self, results: Dict[str, Any]) -> bool:
|
30 |
+
return "metadata" in results and "metrics" in results
|
31 |
+
|
32 |
def get_vidore_data(self, metric="ndcg_at_5"):
|
33 |
models = self.api.list_models(filter="vidore")
|
34 |
repositories = [model.modelId for model in models] # type: ignore
|
35 |
|
36 |
for repo_id in repositories:
|
37 |
+
org_name = repo_id.split("/")[0]
|
38 |
if org_name in BLOCKLIST:
|
39 |
continue
|
|
|
|
|
40 |
|
41 |
+
files = [f for f in self.api.list_repo_files(repo_id) if f.endswith("_metrics.json") or f == "results.json"]
|
42 |
+
|
43 |
if len(files) == 0:
|
44 |
continue
|
45 |
else:
|
46 |
for file in files:
|
47 |
+
if file.endswith("results.json"):
|
48 |
+
model_name = repo_id.replace("/", "_")
|
49 |
else:
|
50 |
+
model_name = file.split("_metrics.json")[0]
|
51 |
|
52 |
if model_name not in self.model_infos:
|
53 |
readme_path = hf_hub_download(repo_id, filename="README.md")
|
|
|
58 |
with open(result_path) as f:
|
59 |
results = json.load(f)
|
60 |
|
61 |
+
if self._are_results_in_new_vidore_format(results):
|
62 |
+
metadata = results["metadata"]
|
63 |
+
results = results["metrics"]
|
64 |
|
65 |
self.model_infos[model_name] = {"meta": meta, "results": results}
|
66 |
except Exception as e:
|
67 |
print(f"Error loading {model_name} - {e}")
|
68 |
continue
|
69 |
|
70 |
+
# self._save_model_infos()
|
71 |
|
72 |
model_res = {}
|
73 |
if len(self.model_infos) > 0:
|
|
|
75 |
res = self.model_infos[model]["results"]
|
76 |
dataset_res = {}
|
77 |
for dataset in res.keys():
|
78 |
+
# for each keyword check if it is in the dataset name if not continue
|
79 |
if not any(keyword in dataset for keyword in VIDORE_DATASETS_KEYWORDS):
|
80 |
print(f"{dataset} not found in ViDoRe datasets. Skipping ...")
|
81 |
continue
|
|
|
83 |
dataset_nickname = get_datasets_nickname(dataset)
|
84 |
dataset_res[dataset_nickname] = res[dataset][metric]
|
85 |
model_res[model] = dataset_res
|
86 |
+
|
87 |
df = pd.DataFrame(model_res).T
|
88 |
+
|
89 |
return df
|
90 |
return pd.DataFrame()
|
91 |
|
|
|
110 |
df.insert(len(df.columns) - len(cols_to_rank), "Average", df[cols_to_rank].mean(axis=1, skipna=False))
|
111 |
df.sort_values("Average", ascending=False, inplace=True)
|
112 |
df.insert(0, "Rank", list(range(1, len(df) + 1)))
|
113 |
+
# multiply values by 100 if they are floats and round to 1 decimal place
|
114 |
for col in df.columns:
|
115 |
if df[col].dtype == "float64":
|
116 |
df[col] = df[col].apply(lambda x: round(x * 100, 1))
|
ruff.toml
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
line-length = 120
|
2 |
+
|
3 |
+
[lint]
|
4 |
+
select = ["E", "F", "W", "I", "N"]
|
5 |
+
|
6 |
+
[lint.per-file-ignores]
|
7 |
+
"__init__.py" = ["F401"]
|