File size: 4,088 Bytes
c5b3aef
 
 
 
 
 
c98b207
 
 
 
 
5cd56f1
c98b207
be961e6
c98b207
 
 
 
 
 
 
 
 
 
 
 
09399fd
c98b207
 
 
 
 
 
 
 
 
 
 
09399fd
c98b207
 
cbb017b
c98b207
09399fd
 
c98b207
 
 
 
5adecab
2692054
c98b207
2692054
c98b207
3193581
09399fd
c98b207
3193581
de27ed6
c98b207
2692054
6904764
09399fd
3193581
6904764
 
 
 
999df98
 
c98b207
3090ac5
c98b207
 
 
09399fd
c98b207
 
 
6904764
09399fd
c98b207
09399fd
 
be961e6
09399fd
 
 
 
c98b207
 
 
cf7a112
 
 
 
 
e7455bb
 
60e7596
5531c0c
 
 
60e7596
e7455bb
c98b207
 
 
 
 
 
 
cff68a5
c98b207
0d0766f
c98b207
5531c0c
c98b207
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb45d22
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import subprocess
subprocess.run(
    'pip install flash-attn --no-build-isolation', 
    env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, 
    shell=True
)
from threading import Thread
import torch
from PIL import Image
import gradio as gr
import spaces
from transformers import AutoModelForCausalLM, AutoProcessor, TextIteratorStreamer
import os
import time
from huggingface_hub import hf_hub_download



os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"

HF_TOKEN = os.environ.get("HF_TOKEN", None)
MODEL_ID = os.environ.get("MODEL_ID")
MODEL_NAME = MODEL_ID.split("/")[-1]

TITLE = "<h1><center>VL-Chatbox</center></h1>"

DESCRIPTION = "<h3><center>MODEL: " + MODEL_NAME + "</center></h3>"

CSS = """
.duplicate-button {
  margin: auto !important;
  color: white !important;
  background: black !important;
  border-radius: 100vh !important;
}
"""

model = AutoModelForCausalLM.from_pretrained(
    MODEL_ID,
    torch_dtype=torch.float16,
    low_cpu_mem_usage=True,
    trust_remote_code=True
).to(0)
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
eos_token_id=processor.tokenizer.eos_token_id




@spaces.GPU(queue=False)
def stream_chat(message, history: list, temperature: float, max_new_tokens: int):
    print(message)
    conversation = []
    for prompt, answer in history:
        conversation.extend([{"role": "user", "content": prompt}, {"role": "assistant", "content": answer}])
    
    if message["files"]:
        image = Image.open(message["files"][-1])
        conversation.append({"role": "user", "content": f"<|image_1|>\n{message['text']}"})
    else:
        if len(history) == 0:
            raise gr.Error("Please upload an image first.")
        image = None
        conversation.append({"role": "user", "content": message['text']})
    print(conversation)
    
    inputs = processor.tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True)
    inputs_ids = processor(inputs, image, return_tensors="pt").to(0)
    streamer = TextIteratorStreamer(processor, **{"skip_special_tokens": True, "skip_prompt": True, 'clean_up_tokenization_spaces':False,}) 

    generate_kwargs = dict(
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        temperature=temperature,
        do_sample=True,
        eos_token_id=eos_token_id,
    )
    if temperature == 0:
        generate_kwargs["do_sample"] = False
    generate_kwargs = {**inputs_ids, **generate_kwargs}
    

    thread = Thread(target=model.generate, kwargs=generate_kwargs)
    thread.start()

    buffer = ""
    for new_text in streamer:
        buffer += new_text
        yield buffer


chatbot = gr.Chatbot(height=450)
chat_input = gr.MultimodalTextbox(
    interactive=True, 
    file_types=["image"], 
    placeholder="Enter message or upload file...", 
    show_label=False,

)
EXAMPLES = [
        {"text": "What is on the desk?", "files": ["./laptop.jpg"]},
        {"text": "Where it is?", "files": ["./hotel.jpg"]},
        {"text": "Can yo describe this image?", "files": ["./spacecat.png"]}
]

with gr.Blocks(css=CSS) as demo:
    gr.HTML(TITLE)
    gr.HTML(DESCRIPTION)
    gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
    gr.ChatInterface(
        fn=stream_chat,
        multimodal=True,
        examples=EXAMPLES,
        textbox=chat_input,
        chatbot=chatbot,
        fill_height=True,
        #additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
        additional_inputs=[
            gr.Slider(
                minimum=0,
                maximum=1,
                step=0.1,
                value=0.8,
                label="Temperature",
                render=False,
            ),
            gr.Slider(
                minimum=128,
                maximum=4096,
                step=1,
                value=1024,
                label="Max new tokens",
                render=False,
            ),
        ],
    )


if __name__ == "__main__":
    demo.queue(api_open=False).launch(show_api=False, share=False)