Spaces:
Paused
Paused
# ------------------------------------------------------------------------ | |
# DINO | |
# Copyright (c) 2022 IDEA. All Rights Reserved. | |
# Licensed under the Apache License, Version 2.0 [see LICENSE for details] | |
# ------------------------------------------------------------------------ | |
# Modified from Mask2Former https://github.com/facebookresearch/Mask2Former by Feng Li and Hao Zhang. | |
import logging | |
import fvcore.nn.weight_init as weight_init | |
import torch | |
from torch import nn | |
from torch.nn import functional as F | |
from detectron2.config import configurable | |
from detectron2.layers import Conv2d | |
from detectron2.utils.registry import Registry | |
from detectron2.structures import BitMasks | |
from timm.models.layers import trunc_normal_ | |
from .dino_decoder import TransformerDecoder, DeformableTransformerDecoderLayer | |
from ...utils.utils import MLP, gen_encoder_output_proposals, inverse_sigmoid | |
from ...utils import box_ops | |
TRANSFORMER_DECODER_REGISTRY = Registry("TRANSFORMER_MODULE") | |
TRANSFORMER_DECODER_REGISTRY.__doc__ = """ | |
Registry for transformer module in MaskDINO. | |
""" | |
def build_transformer_decoder(cfg, in_channels, lang_encoder, mask_classification=True): | |
""" | |
Build a instance embedding branch from `cfg.MODEL.INS_EMBED_HEAD.NAME`. | |
""" | |
name = cfg.MODEL.MaskDINO.TRANSFORMER_DECODER_NAME | |
return TRANSFORMER_DECODER_REGISTRY.get(name)(cfg, in_channels, lang_encoder, mask_classification) | |
class MaskDINODecoder(nn.Module): | |
def __init__( | |
self, | |
in_channels, | |
lang_encoder, | |
mask_classification=True, | |
*, | |
num_classes: int, | |
hidden_dim: int, | |
num_queries: int, | |
nheads: int, | |
dim_feedforward: int, | |
dec_layers: int, | |
mask_dim: int, | |
dim_projection: int, | |
enforce_input_project: bool, | |
two_stage: bool, | |
dn: str, | |
noise_scale:float, | |
dn_num:int, | |
initialize_box_type:bool, | |
initial_pred:bool, | |
learn_tgt: bool, | |
total_num_feature_levels: int = 4, | |
dropout: float = 0.0, | |
activation: str = 'relu', | |
nhead: int = 8, | |
dec_n_points: int = 4, | |
return_intermediate_dec: bool = True, | |
query_dim: int = 4, | |
dec_layer_share: bool = False, | |
semantic_ce_loss: bool = False, | |
cross_track_layer: bool = False, | |
): | |
""" | |
NOTE: this interface is experimental. | |
Args: | |
in_channels: channels of the input features | |
mask_classification: whether to add mask classifier or not | |
num_classes: number of classes | |
hidden_dim: Transformer feature dimension | |
num_queries: number of queries | |
nheads: number of heads | |
dim_feedforward: feature dimension in feedforward network | |
enc_layers: number of Transformer encoder layers | |
dec_layers: number of Transformer decoder layers | |
pre_norm: whether to use pre-LayerNorm or not | |
mask_dim: mask feature dimension | |
enforce_input_project: add input project 1x1 conv even if input | |
channels and hidden dim is identical | |
d_model: transformer dimension | |
dropout: dropout rate | |
activation: activation function | |
nhead: num heads in multi-head attention | |
dec_n_points: number of sampling points in decoder | |
return_intermediate_dec: return the intermediate results of decoder | |
query_dim: 4 -> (x, y, w, h) | |
dec_layer_share: whether to share each decoder layer | |
semantic_ce_loss: use ce loss for semantic segmentation | |
""" | |
super().__init__() | |
assert mask_classification, "Only support mask classification model" | |
self.mask_classification = mask_classification | |
self.num_feature_levels = total_num_feature_levels | |
self.initial_pred = initial_pred | |
self.lang_encoder = lang_encoder | |
# define Transformer decoder here | |
self.dn=dn | |
self.learn_tgt = learn_tgt | |
self.noise_scale=noise_scale | |
self.dn_num=dn_num | |
self.num_heads = nheads | |
self.num_layers = dec_layers | |
self.two_stage=two_stage | |
self.initialize_box_type = initialize_box_type | |
self.total_num_feature_levels = total_num_feature_levels | |
self.num_queries = num_queries | |
self.semantic_ce_loss = semantic_ce_loss | |
# learnable query features | |
if not two_stage or self.learn_tgt: | |
self.query_feat = nn.Embedding(num_queries, hidden_dim) | |
if not two_stage and initialize_box_type == 'no': | |
self.query_embed = nn.Embedding(num_queries, 4) | |
if two_stage: | |
self.enc_output = nn.Linear(hidden_dim, hidden_dim) | |
self.enc_output_norm = nn.LayerNorm(hidden_dim) | |
self.input_proj = nn.ModuleList() | |
for _ in range(self.num_feature_levels): | |
if in_channels != hidden_dim or enforce_input_project: | |
self.input_proj.append(Conv2d(in_channels, hidden_dim, kernel_size=1)) | |
weight_init.c2_xavier_fill(self.input_proj[-1]) | |
else: | |
self.input_proj.append(nn.Sequential()) | |
self.num_classes = { | |
'obj365':100, | |
'obj365_clip':100, | |
'lvis':100, | |
'openimage':100, | |
'lvis_clip':100, | |
'openimage_clip':100, | |
'grit':100, | |
'vg':200, | |
'coco':80, | |
'coco_clip':80, | |
'grounding':1, | |
'rvos':1, | |
'sa1b':1, | |
'sa1b_clip':1, | |
'bdd_det':10, | |
'bdd_inst':8, | |
'ytvis19':40, | |
'image_yt19':40, | |
'image_yt21':40, | |
'bdd_track_seg':8, | |
'bdd_track_box':8, | |
'ovis':25, | |
'image_o':25, | |
'ytvis21':40, | |
'uvo_video': 81, | |
'ytbvos':1, | |
} | |
# output FFNs | |
assert self.mask_classification, "why not class embedding?" | |
self.confidence_score = MLP(hidden_dim, hidden_dim, 1, 2) | |
self.category_embed = nn.Parameter(torch.rand(hidden_dim, dim_projection)) | |
# trunc_normal_(self.category_embed, std=.02) | |
# self.track_embed = MLP(hidden_dim, hidden_dim, hidden_dim, 3) | |
self.coco_label_enc = nn.Embedding(80,hidden_dim) | |
self.obj365_label_enc = nn.Embedding(100, hidden_dim) | |
self.vg_label_enc = nn.Embedding(200, hidden_dim) | |
self.grounding_label_enc = nn.Embedding(1,hidden_dim) | |
self.ytvis19_label_enc = nn.Embedding(40,hidden_dim) | |
self.ytvis21_label_enc = nn.Embedding(40,hidden_dim) | |
self.ovis_label_enc = nn.Embedding(25,hidden_dim) | |
self.uvo_label_enc = nn.Embedding(81,hidden_dim) | |
self.bdd_det = nn.Embedding(10,hidden_dim) | |
self.bdd_inst = nn.Embedding(8,hidden_dim) | |
self.label_enc = { | |
'coco': self.coco_label_enc, | |
'coco_clip': self.coco_label_enc, | |
'coconomask': self.coco_label_enc, | |
'obj365': self.obj365_label_enc, | |
'lvis': self.obj365_label_enc, | |
'openimage': self.obj365_label_enc, | |
'grit': self.obj365_label_enc, | |
'vg': self.vg_label_enc, | |
'obj365_clip': self.obj365_label_enc, | |
'lvis_clip': self.obj365_label_enc, | |
'openimage_clip': self.obj365_label_enc, | |
'bdd_det':self.bdd_det, | |
'bdd_inst':self.bdd_inst, | |
'bdd_track_seg':self.bdd_inst, | |
'bdd_track_box':self.bdd_inst, | |
'sa1b': self.grounding_label_enc, | |
'sa1b_clip': self.grounding_label_enc, | |
'grounding': self.grounding_label_enc, | |
'rvos': self.grounding_label_enc, | |
'uvo_video':self.uvo_label_enc, | |
'ytvis19':self.ytvis19_label_enc, | |
'image_yt19': self.ytvis19_label_enc, | |
'ytvis21':self.ytvis21_label_enc, | |
'image_yt21':self.ytvis21_label_enc, | |
'ovis':self.ovis_label_enc, | |
'image_o': self.ovis_label_enc, | |
'burst':self.grounding_label_enc, | |
'ytbvos':self.grounding_label_enc, | |
} | |
self.mask_embed = MLP(hidden_dim, hidden_dim, mask_dim, 3) | |
# init decoder | |
self.decoder_norm = decoder_norm = nn.LayerNorm(hidden_dim) | |
decoder_layer = DeformableTransformerDecoderLayer(hidden_dim, dim_feedforward, | |
dropout, activation, | |
self.num_feature_levels, nhead, dec_n_points) | |
self.decoder = TransformerDecoder(decoder_layer, self.num_layers, decoder_norm, | |
return_intermediate=return_intermediate_dec, | |
d_model=hidden_dim, query_dim=query_dim, | |
num_feature_levels=self.num_feature_levels, | |
dec_layer_share=dec_layer_share, | |
cross_track_layer = cross_track_layer, | |
n_levels=self.num_feature_levels, n_heads=nhead, n_points=dec_n_points | |
) | |
self.cross_track_layer = cross_track_layer | |
self.hidden_dim = hidden_dim | |
self._bbox_embed = _bbox_embed = MLP(hidden_dim, hidden_dim, 4, 3) | |
nn.init.constant_(_bbox_embed.layers[-1].weight.data, 0) | |
nn.init.constant_(_bbox_embed.layers[-1].bias.data, 0) | |
box_embed_layerlist = [_bbox_embed for i in range(self.num_layers)] # share box prediction each layer | |
self.bbox_embed = nn.ModuleList(box_embed_layerlist) | |
self.decoder.bbox_embed = self.bbox_embed | |
def from_config(cls, cfg, in_channels, lang_encoder, mask_classification): | |
ret = {} | |
ret["in_channels"] = in_channels | |
ret["lang_encoder"] = lang_encoder | |
ret["mask_classification"] = mask_classification | |
ret["dim_projection"] = cfg.MODEL.DIM_PROJ | |
ret["num_classes"] = cfg.MODEL.SEM_SEG_HEAD.NUM_CLASSES | |
ret["hidden_dim"] = cfg.MODEL.MaskDINO.HIDDEN_DIM | |
ret["num_queries"] = cfg.MODEL.MaskDINO.NUM_OBJECT_QUERIES | |
# Transformer parameters: | |
ret["nheads"] = cfg.MODEL.MaskDINO.NHEADS | |
ret["dim_feedforward"] = cfg.MODEL.MaskDINO.DIM_FEEDFORWARD | |
ret["dec_layers"] = cfg.MODEL.MaskDINO.DEC_LAYERS | |
ret["enforce_input_project"] = cfg.MODEL.MaskDINO.ENFORCE_INPUT_PROJ | |
ret["mask_dim"] = cfg.MODEL.SEM_SEG_HEAD.MASK_DIM | |
ret["two_stage"] =cfg.MODEL.MaskDINO.TWO_STAGE | |
ret["initialize_box_type"] = cfg.MODEL.MaskDINO.INITIALIZE_BOX_TYPE # ['no', 'bitmask', 'mask2box'] | |
ret["dn"]=cfg.MODEL.MaskDINO.DN | |
ret["noise_scale"] =cfg.MODEL.MaskDINO.DN_NOISE_SCALE | |
ret["dn_num"] =cfg.MODEL.MaskDINO.DN_NUM | |
ret["initial_pred"] =cfg.MODEL.MaskDINO.INITIAL_PRED | |
ret["learn_tgt"] = cfg.MODEL.MaskDINO.LEARN_TGT | |
ret["total_num_feature_levels"] = cfg.MODEL.SEM_SEG_HEAD.TOTAL_NUM_FEATURE_LEVELS | |
ret["semantic_ce_loss"] = cfg.MODEL.MaskDINO.TEST.SEMANTIC_ON and cfg.MODEL.MaskDINO.SEMANTIC_CE_LOSS and ~cfg.MODEL.MaskDINO.TEST.PANOPTIC_ON | |
ret["cross_track_layer"] = cfg.MODEL.CROSS_TRACK | |
return ret | |
def prepare_for_dn(self, targets, tgt, refpoint_emb, batch_size,task): | |
""" | |
modified from dn-detr. You can refer to dn-detr | |
https://github.com/IDEA-Research/DN-DETR/blob/main/models/dn_dab_deformable_detr/dn_components.py | |
for more details | |
:param dn_args: scalar, noise_scale | |
:param tgt: original tgt (content) in the matching part | |
:param refpoint_emb: positional anchor queries in the matching part | |
:param batch_size: bs | |
""" | |
if self.training: | |
scalar, noise_scale = self.dn_num,self.noise_scale | |
known = [(torch.ones_like(t['labels'])).cuda() for t in targets] | |
know_idx = [torch.nonzero(t) for t in known] | |
known_num = [sum(k) for k in known] | |
# use fix number of dn queries | |
if max(known_num)>0: | |
scalar = scalar//(int(max(known_num))) | |
else: | |
scalar = 0 | |
if scalar == 0: | |
input_query_label = None | |
input_query_bbox = None | |
attn_mask = None | |
mask_dict = None | |
return input_query_label, input_query_bbox, attn_mask, mask_dict | |
# can be modified to selectively denosie some label or boxes; also known label prediction | |
unmask_bbox = unmask_label = torch.cat(known) | |
labels = torch.cat([t['labels'] for t in targets]) | |
boxes = torch.cat([t['boxes'] for t in targets]) | |
batch_idx = torch.cat([torch.full_like(t['labels'].long(), i) for i, t in enumerate(targets)]) | |
# known | |
known_indice = torch.nonzero(unmask_label + unmask_bbox) | |
known_indice = known_indice.view(-1) | |
# noise | |
known_indice = known_indice.repeat(scalar, 1).view(-1) | |
known_labels = labels.repeat(scalar, 1).view(-1) | |
known_bid = batch_idx.repeat(scalar, 1).view(-1) | |
known_bboxs = boxes.repeat(scalar, 1) | |
known_labels_expaned = known_labels.clone() | |
known_bbox_expand = known_bboxs.clone() | |
# noise on the label | |
if noise_scale > 0: | |
p = torch.rand_like(known_labels_expaned.float()) | |
chosen_indice = torch.nonzero(p < (noise_scale * 0.5)).view(-1) # half of bbox prob | |
new_label = torch.randint_like(chosen_indice, 0, self.num_classes[task]) # randomly put a new one here | |
known_labels_expaned.scatter_(0, chosen_indice, new_label) | |
if noise_scale > 0: | |
diff = torch.zeros_like(known_bbox_expand) | |
diff[:, :2] = known_bbox_expand[:, 2:] / 2 | |
diff[:, 2:] = known_bbox_expand[:, 2:] | |
known_bbox_expand += torch.mul((torch.rand_like(known_bbox_expand) * 2 - 1.0), | |
diff).cuda() * noise_scale | |
known_bbox_expand = known_bbox_expand.clamp(min=0.0, max=1.0) | |
m = known_labels_expaned.long().to('cuda') | |
input_label_embed = self.label_enc[task](m) | |
input_bbox_embed = inverse_sigmoid(known_bbox_expand) | |
single_pad = int(max(known_num)) | |
pad_size = int(single_pad * scalar) | |
padding_label = torch.zeros(pad_size, self.hidden_dim).cuda() | |
padding_bbox = torch.zeros(pad_size, 4).cuda() | |
if not refpoint_emb is None: | |
input_query_label = torch.cat([padding_label, tgt], dim=0).repeat(batch_size, 1, 1) | |
input_query_bbox = torch.cat([padding_bbox, refpoint_emb], dim=0).repeat(batch_size, 1, 1) | |
else: | |
input_query_label=padding_label.repeat(batch_size, 1, 1) | |
input_query_bbox = padding_bbox.repeat(batch_size, 1, 1) | |
# map | |
map_known_indice = torch.tensor([]).to('cuda') | |
if len(known_num): | |
map_known_indice = torch.cat([torch.tensor(range(num)) for num in known_num]) # [1,2, 1,2,3] | |
map_known_indice = torch.cat([map_known_indice + single_pad * i for i in range(scalar)]).long() | |
if len(known_bid): | |
input_query_label[(known_bid.long(), map_known_indice)] = input_label_embed | |
input_query_bbox[(known_bid.long(), map_known_indice)] = input_bbox_embed | |
tgt_size = pad_size + self.num_queries | |
attn_mask = torch.ones(tgt_size, tgt_size).to('cuda') < 0 | |
# match query cannot see the reconstruct | |
attn_mask[pad_size:, :pad_size] = True | |
# reconstruct cannot see each other | |
for i in range(scalar): | |
if i == 0: | |
attn_mask[single_pad * i:single_pad * (i + 1), single_pad * (i + 1):pad_size] = True | |
if i == scalar - 1: | |
attn_mask[single_pad * i:single_pad * (i + 1), :single_pad * i] = True | |
else: | |
attn_mask[single_pad * i:single_pad * (i + 1), single_pad * (i + 1):pad_size] = True | |
attn_mask[single_pad * i:single_pad * (i + 1), :single_pad * i] = True | |
mask_dict = { | |
'known_indice': torch.as_tensor(known_indice).long(), | |
'batch_idx': torch.as_tensor(batch_idx).long(), | |
'map_known_indice': torch.as_tensor(map_known_indice).long(), | |
'known_lbs_bboxes': (known_labels, known_bboxs), | |
'know_idx': know_idx, | |
'pad_size': pad_size, | |
'scalar': scalar, | |
} | |
else: | |
if not refpoint_emb is None: | |
input_query_label = tgt.repeat(batch_size, 1, 1) | |
input_query_bbox = refpoint_emb.repeat(batch_size, 1, 1) | |
else: | |
input_query_label=None | |
input_query_bbox=None | |
attn_mask = None | |
mask_dict=None | |
# 100*batch*256 | |
if not input_query_bbox is None: | |
input_query_label = input_query_label | |
input_query_bbox = input_query_bbox | |
return input_query_label,input_query_bbox,attn_mask,mask_dict | |
def dn_post_process(self,outputs_class,outputs_score,outputs_coord,mask_dict,outputs_mask): | |
""" | |
post process of dn after output from the transformer | |
put the dn part in the mask_dict | |
""" | |
assert mask_dict['pad_size'] > 0 | |
output_known_class = outputs_class[:, :, :mask_dict['pad_size'], :] | |
outputs_class = outputs_class[:, :, mask_dict['pad_size']:, :] | |
output_known_score = outputs_score[:, :, :mask_dict['pad_size'], :] | |
outputs_score = outputs_score[:, :, mask_dict['pad_size']:, :] | |
output_known_coord = outputs_coord[:, :, :mask_dict['pad_size'], :] | |
outputs_coord = outputs_coord[:, :, mask_dict['pad_size']:, :] | |
if outputs_mask is not None: | |
output_known_mask = outputs_mask[:, :, :mask_dict['pad_size'], :] | |
outputs_mask = outputs_mask[:, :, mask_dict['pad_size']:, :] | |
out = {'pred_logits': output_known_class[-1], 'pred_scores':output_known_score[-1],'pred_boxes': output_known_coord[-1],'pred_masks': output_known_mask[-1]} | |
out['aux_outputs'] = self._set_aux_loss(output_known_class, output_known_score, output_known_mask, output_known_coord) | |
mask_dict['output_known_lbs_bboxes']=out | |
return outputs_class, outputs_score, outputs_coord, outputs_mask | |
def get_valid_ratio(self, mask): | |
_, H, W = mask.shape | |
valid_H = torch.sum(~mask[:, :, 0], 1) | |
valid_W = torch.sum(~mask[:, 0, :], 1) | |
valid_ratio_h = valid_H.float() / H | |
valid_ratio_w = valid_W.float() / W | |
valid_ratio = torch.stack([valid_ratio_w, valid_ratio_h], -1) | |
return valid_ratio | |
def pred_box(self, reference, hs, ref0=None): | |
""" | |
:param reference: reference box coordinates from each decoder layer | |
:param hs: content | |
:param ref0: whether there are prediction from the first layer | |
""" | |
device = reference[0].device | |
if ref0 is None: | |
outputs_coord_list = [] | |
else: | |
outputs_coord_list = [ref0.to(device)] | |
for dec_lid, (layer_ref_sig, layer_bbox_embed, layer_hs) in enumerate(zip(reference[:-1], self.bbox_embed, hs)): | |
layer_delta_unsig = layer_bbox_embed(layer_hs).to(device) | |
layer_outputs_unsig = layer_delta_unsig + inverse_sigmoid(layer_ref_sig).to(device) | |
layer_outputs_unsig = layer_outputs_unsig.sigmoid() | |
outputs_coord_list.append(layer_outputs_unsig) | |
outputs_coord_list = torch.stack(outputs_coord_list) | |
return outputs_coord_list | |
def forward(self, x, mask_features, extra, task, masks, targets=None): | |
""" | |
:param x: input, a list of multi-scale feature | |
:param mask_features: is the per-pixel embeddings with resolution 1/4 of the original image, | |
obtained by fusing backbone encoder encoded features. This is used to produce binary masks. | |
:param masks: mask in the original image | |
:param targets: used for denoising training | |
""" | |
if 'spatial_query_pos_mask' in extra: | |
visual_P = True | |
else: | |
visual_P = False | |
assert len(x) == self.num_feature_levels | |
device = x[0].device | |
size_list = [] | |
# disable mask, it does not affect performance | |
enable_mask = 0 | |
if masks is not None: | |
for src in x: | |
if src.size(2) % 32 or src.size(3) % 32: | |
enable_mask = 1 | |
if enable_mask == 0: | |
masks = [torch.zeros((src.size(0), src.size(2), src.size(3)), device=src.device, dtype=torch.bool) for src in x] | |
src_flatten = [] | |
mask_flatten = [] | |
spatial_shapes = [] | |
for i in range(self.num_feature_levels): | |
idx=self.num_feature_levels-1-i | |
bs, c , h, w=x[idx].shape | |
size_list.append(x[i].shape[-2:]) | |
spatial_shapes.append(x[idx].shape[-2:]) | |
src_flatten.append(self.input_proj[idx](x[idx]).flatten(2).transpose(1, 2)) | |
mask_flatten.append(masks[i].flatten(1)) | |
src_flatten = torch.cat(src_flatten, 1) # bs, \sum{hxw}, c | |
mask_flatten = torch.cat(mask_flatten, 1) # bs, \sum{hxw} | |
spatial_shapes = torch.as_tensor(spatial_shapes, dtype=torch.long, device=src_flatten.device) | |
level_start_index = torch.cat((spatial_shapes.new_zeros((1,)), spatial_shapes.prod(1).cumsum(0)[:-1])) | |
valid_ratios = torch.stack([self.get_valid_ratio(m) for m in masks], 1) | |
predictions_federate = [] | |
predictions_score = [] | |
predictions_class = [] | |
predictions_mask = [] | |
if self.two_stage: | |
output_memory, output_proposals = gen_encoder_output_proposals(src_flatten, mask_flatten, spatial_shapes) | |
output_memory = self.enc_output_norm(self.enc_output(output_memory)) | |
if task in ['grounding','rvos']: | |
class_embed = output_memory @ self.category_embed | |
enc_outputs_class_unselected = torch.einsum("bqc,bc->bq", class_embed, extra['grounding_class']).unsqueeze(-1) #[bz,numq,1] | |
elif visual_P: | |
enc_outputs_class_unselected = self.confidence_score(output_memory) | |
else: | |
class_embed = output_memory @ self.category_embed # [bz,num_q,projectdim] | |
enc_outputs_class_unselected = torch.einsum("bqc,nc->bqn", class_embed, extra['class_embeddings']) #[bz,n,80] | |
enc_outputs_coord_unselected = self._bbox_embed( | |
output_memory) + output_proposals # (bs, \sum{hw}, 4) unsigmoid | |
topk = self.num_queries | |
topk_proposals = torch.topk(enc_outputs_class_unselected.max(-1)[0], topk, dim=1)[1] | |
refpoint_embed_undetach = torch.gather(enc_outputs_coord_unselected, 1, | |
topk_proposals.unsqueeze(-1).repeat(1, 1, 4)) # unsigmoid | |
refpoint_embed = refpoint_embed_undetach.detach() #[bz,num_q,4] | |
tgt_undetach = torch.gather(output_memory, 1, | |
topk_proposals.unsqueeze(-1).repeat(1, 1, self.hidden_dim)) # unsigmoid #[bz,num_q.256] | |
conf_score, outputs_class, outputs_mask,_ = self.forward_prediction_heads(tgt_undetach.transpose(0, 1), mask_features, task, extra, mask_dict = None) | |
tgt = tgt_undetach.detach() | |
if self.learn_tgt: | |
tgt = self.query_feat.weight[None].repeat(bs, 1, 1) | |
interm_outputs=dict() | |
interm_outputs['pred_logits'] = outputs_class | |
interm_outputs['pred_scores'] = conf_score | |
interm_outputs['pred_boxes'] = refpoint_embed_undetach.sigmoid() | |
interm_outputs['pred_masks'] = outputs_mask | |
elif not self.two_stage: | |
tgt = self.query_feat.weight[None].repeat(bs, 1, 1) | |
refpoint_embed = self.query_embed.weight[None].repeat(bs, 1, 1) | |
tgt_mask = None | |
mask_dict = None | |
if self.dn != "no" and self.training: | |
assert targets is not None | |
input_query_label, input_query_bbox, tgt_mask, mask_dict = \ | |
self.prepare_for_dn(targets, None, None, x[0].shape[0],task) | |
if mask_dict is not None: | |
tgt=torch.cat([input_query_label, tgt],dim=1) | |
# direct prediction from the matching and denoising part in the begining | |
if self.initial_pred: | |
conf_score, outputs_class, outputs_mask, pred_federat = self.forward_prediction_heads(tgt.transpose(0, 1), mask_features, task, extra, mask_dict, self.training) | |
predictions_score.append(conf_score) | |
predictions_class.append(outputs_class) | |
predictions_mask.append(outputs_mask) | |
predictions_federate.append(pred_federat) | |
if self.dn != "no" and self.training and mask_dict is not None: | |
refpoint_embed=torch.cat([input_query_bbox,refpoint_embed],dim=1) | |
hs, references, cross_track_embed = self.decoder( | |
tgt=tgt.transpose(0, 1), | |
memory=src_flatten.transpose(0, 1), | |
memory_key_padding_mask=mask_flatten, | |
pos=None, | |
refpoints_unsigmoid=refpoint_embed.transpose(0, 1), | |
level_start_index=level_start_index, | |
spatial_shapes=spatial_shapes, | |
valid_ratios=valid_ratios, | |
tgt_mask=tgt_mask, | |
task=task, | |
extra=extra, | |
) | |
for i, output in enumerate(hs): | |
conf_score, outputs_class, outputs_mask,pred_federat = self.forward_prediction_heads(output.transpose(0, 1), mask_features, task, extra, mask_dict, self.training or (i == len(hs)-1)) | |
predictions_score.append(conf_score) | |
predictions_class.append(outputs_class) | |
predictions_mask.append(outputs_mask) | |
predictions_federate.append(pred_federat) | |
# iteratively box prediction | |
if self.initial_pred: | |
out_boxes = self.pred_box(references, hs, refpoint_embed.sigmoid()) | |
assert len(predictions_class) == self.num_layers + 1 | |
else: | |
out_boxes = self.pred_box(references, hs) | |
if mask_dict is not None: | |
predictions_mask=torch.stack(predictions_mask) | |
predictions_class=torch.stack(predictions_class) | |
predictions_score = torch.stack(predictions_score) | |
predictions_class, predictions_score, out_boxes, predictions_mask=\ | |
self.dn_post_process(predictions_class, predictions_score, out_boxes,mask_dict,predictions_mask) | |
predictions_class, predictions_score, predictions_mask=list(predictions_class), list(predictions_score), list(predictions_mask) | |
elif self.training: # this is to insure self.label_enc participate in the model | |
predictions_class[-1] += 0.0*self.label_enc[task].weight.sum() | |
if mask_dict is not None: | |
track_embed = hs[-1][:, mask_dict['pad_size']:, :] | |
else: | |
track_embed = hs[-1] | |
out = { | |
'pred_federat':predictions_federate[-1], | |
'pred_logits': predictions_class[-1], | |
'pred_scores': predictions_score[-1], | |
'pred_masks': predictions_mask[-1], | |
'pred_boxes':out_boxes[-1], | |
'pred_track_embed': track_embed, | |
'visual_P': visual_P, | |
'aux_outputs': self._set_aux_loss( | |
predictions_class if self.mask_classification else None, predictions_score, predictions_mask, out_boxes, predictions_federate, visual_P | |
) | |
} | |
if self.two_stage: | |
out['interm_outputs'] = interm_outputs | |
return out, mask_dict | |
def forward_prediction_heads(self, output, mask_features, task, extra,mask_dict, pred_mask=True, visual_P=False): | |
decoder_output = self.decoder_norm(output) | |
decoder_output = decoder_output.transpose(0, 1) | |
# outputs_class = self.class_embed(decoder_output) | |
conf_score = self.confidence_score(decoder_output) # if visual_P else None | |
class_embed = decoder_output @ self.category_embed # [bz,num_q,projectdim] | |
if task in ['grounding', 'rvos']: | |
outputs_class = torch.einsum("bqc,bc->bq", class_embed, extra['grounding_class']).unsqueeze(-1) #[bz,numq,1] | |
else: | |
outputs_class = torch.einsum("bqc,nc->bqn", class_embed, extra['class_embeddings']) #[bz,n,80] | |
outputs_mask = None | |
if pred_mask: | |
mask_embed = self.mask_embed(decoder_output) | |
outputs_mask = torch.einsum("bqc,bchw->bqhw", mask_embed, mask_features) | |
return conf_score, outputs_class, outputs_mask, None | |
def _set_aux_loss(self, outputs_class, outputs_score, outputs_seg_masks, out_boxes, predictions_federate=None, visual_P=False): | |
# this is a workaround to make torchscript happy, as torchscript | |
# doesn't support dictionary with non-homogeneous values, such | |
# as a dict having both a Tensor and a list. | |
# if self.mask_classification: | |
if predictions_federate is None: | |
return [ | |
{"pred_logits": a, "pred_scores": b, "pred_masks": c, "pred_boxes":d, 'visual_P': visual_P} | |
for a, b, c, d in zip(outputs_class[:-1], outputs_score[:-1], outputs_seg_masks[:-1], out_boxes[:-1]) | |
] | |
else: | |
return [ | |
{"pred_logits": a, "pred_scores": b, "pred_masks": c, "pred_boxes":d, 'pred_federat':e,'visual_P': visual_P} | |
for a, b, c, d, e in zip(outputs_class[:-1], outputs_score[:-1], outputs_seg_masks[:-1], out_boxes[:-1], predictions_federate[:-1]) | |
] |