inkchatgpt / README.md
vinhnx90's picture
Update README
27556cc
|
raw
history blame
2.34 kB
<p align="center">
<img src="./assets/large_icon.png" height="200" alt="icon" />
</p>
<p align="center">
<em>πŸ“š InkChatGPT - Chat with Documents</em>
</p>
<p align="center">
<a href="https://inkchatgpt.streamlit.app/"><img src="https://static.streamlit.io/badges/streamlit_badge_black_white.svg"></a>
</p>
<p align="center">
<b><a href="https://x.com/vinhnx">Twitter</a>
<span>&nbsp;&nbsp;β€’&nbsp;&nbsp;</span>
<a href="https://github.com/vinhnx">GitHub</a></b>
</p>
# InkChatGPT
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
![GitHub User's stars](https://img.shields.io/github/stars/vinhnx)
![HackerNews User Karma](https://img.shields.io/hackernews/user-karma/vinhnx)
[![X (formerly Twitter) Follow](https://img.shields.io/twitter/follow/vinhnx)](https://x.com/vinhnx)
`InkChatGPT` is a `Streamlit` application that allows users to upload PDF documents and engage in a conversational Q&A with a language model (`LLM`) based on the content of those documents.
### Features
- Upload any PDF documents and start asking key information about it, currently supports: PDF, TXT, DOCX, EPUB
- Limit 200MB per file
- Conversational Q&A with LLM (powered by `OpenAI`'s GPT-3.5-turbo model)
- Use `HuggingFace` embeddings to generate embeddings for the document chunks with `all-MiniLM-L6-v2` model.
- Clear conversation history
- Responsive UI with loading indicators and chat interface
## Prerequisites
- Python 3.7 or later
- OpenAI API key (set as an environment variable: `OPENAI_API_KEY`)
## Installation
1. Clone the repository:
```sh
git clone https://github.com/vinhnx/InkChatGPT.git
cd InkChatGPT
```
2. Create a virtual environment and activate it:
```sh
python -m venv env
source env/bin/activate
```
3. Install the required dependencies:
```sh
pip install -r requirements.txt
```
## Usage
1. Set the `OPENAI_API_KEY` environment variable with your OpenAI API key:
export OPENAI_API_KEY=YOUR_API_KEY
2. Run the Streamlit app:
```sh
streamlit run app.py
```
3. Upload PDF documents and start chatting with the LLM!
## Contributing
Contributions are welcome! Please open an issue or submit a pull request if you have any improvements or bug fixes.
## License
This project is licensed under the [MIT License](LICENSE).