vishalkatheriya's picture
Update app.py
fad0c74 verified
raw
history blame
2.76 kB
import streamlit as st
from PIL import Image
import inference
from transformers import AutoProcessor, AutoModelForCausalLM
from PIL import Image
import requests
import copy
import os
from unittest.mock import patch
from transformers.dynamic_module_utils import get_imports
import torch
#remove flash_attn for load model in cpu
def fixed_get_imports(filename: str | os.PathLike) -> list[str]:
if not str(filename).endswith("modeling_florence2.py"):
return get_imports(filename)
imports = get_imports(filename)
imports.remove("flash_attn")
return imports
# Initialize session state for model loading and to block re-running
if 'model_loaded' not in st.session_state:
st.session_state.model_loaded = False
# Function to load the model (e.g., Florence-2 model)
def load_model():
# Simulate model loading process
model_id = "microsoft/Florence-2-large"
#processor loading
st.session_state.processor = AutoProcessor.from_pretrained(model_id, torch_dtype=torch.qint8, trust_remote_code=True)
# Load the model normally
with patch("transformers.dynamic_module_utils.get_imports", fixed_get_imports): # workaround for unnecessary flash_attn requirement
model = AutoModelForCausalLM.from_pretrained(model_id, attn_implementation="sdpa", trust_remote_code=True)
# Apply dynamic quantization
Qmodel = torch.quantization.quantize_dynamic(
model, {torch.nn.Linear}, dtype=torch.qint8
)
del model
st.session_state.model = Qmodel
st.session_state.model_loaded = True
st.write("model loaded complete")
# Load the model only once
if not st.session_state.model_loaded:
with st.spinner('Loading model...'):
load_model()
# Initialize session state to block re-running
if 'has_run' not in st.session_state:
st.session_state.has_run = False
# Main UI container
st.markdown('<h3><center><b>VQA</b></center></h3>', unsafe_allow_html=True)
# Image upload area
uploaded_image = st.sidebar.file_uploader("Upload your image here", type=["jpg", "jpeg", "png"])
# Display the uploaded image and process it if available
if uploaded_image is not None:
image = Image.open(uploaded_image)
st.image(image, caption="Uploaded Image", use_column_width=True)
# Task prompt input
task_prompt = st.sidebar.text_input("Task Prompt", value="Describe the image in detail:")
# Additional text input (optional)
text_input = st.sidebar.text_area("Input Questions", height=20)
# Generate Caption button
if st.sidebar.button("Generate Caption", key="Generate") and not st.session_state.has_run:
# Mark that the script has been run
st.session_state.has_run = True
st.write(task_prompt,"\n\n",text_input)
inference.demo()