Spaces:
Runtime error
Runtime error
import streamlit as st | |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer | |
st.title("SpellCorrectorT5") | |
st.markdown('SpellCorrectorT5 is a fine-tuned version of **pre-trained t5-small model** modelled on randomly selected 50000 sentences modified by [imputing random noises/errors](./random_noiser.py) and trained using transformers. It not only looks for _spelling errors but also looks for the semantics_ in the sentence and suggest other possible words for the incorrect word.') | |
ttokenizer = AutoTokenizer.from_pretrained("vishnun/tinygram") | |
tmodel = AutoModelForSeq2SeqLM.from_pretrained("vishnun/tinygram") | |
form = st.form("T5-form") | |
examples = ["I will return it to yu once it is donr", | |
"Iu is going to rain",, | |
"Wheir do you live?", | |
"It wis great mieting with you all"] | |
input_text = form.selectbox(label="Choose an example", | |
options=examples) | |
form.write("(or)") | |
input_text = form.text_input(label='Enter your own sentence', value=input_text) | |
submit = form.form_submit_button("Submit") | |
if submit: | |
input_ids = ttokenizer.encode(input_text, return_tensors='pt') | |
# generate text until the output length (which includes the context length) reaches 50 | |
outputs = tmodel.generate( | |
input_ids, | |
do_sample=True, | |
max_length=50, | |
top_p=0.999, | |
top_k=45, | |
num_return_sequences=2 | |
) | |
st.subheader("Most probable: ") | |
for y in outputs: | |
out_text = ttokenizer.decode(y, skip_special_tokens=True) | |
st.success(out_text.capitalize()) | |
c_text = "" | |
for x in out_text.lower().split(" "): | |
if x in input_text.lower().split(" "): | |
c_text = c_text + x + " " | |
else: | |
c_text = c_text + '<span style="font-weight:bold; color:rgb(150,255,100);">' + x + '</span>' + " " | |
ct = c_text.capitalize() | |
st.markdown(str(ct), unsafe_allow_html=True) | |
st.markdown("***", unsafe_allow_html=True) |