Spaces:
Running
Running
File size: 10,043 Bytes
ed3be18 fe11376 79df839 6fa1fc7 79df839 fe11376 96c70ac fe11376 ab23cbe 96c70ac ab23cbe 96c70ac ab23cbe 96c70ac ab23cbe 96c70ac ab23cbe 96c70ac ab23cbe fe11376 6fa1fc7 fe11376 79df839 7177545 9d76491 79df839 fb1a46d b2110ff d43d2ac b2110ff d43d2ac b2110ff fb1a46d b2110ff fb1a46d 96c70ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
import gradio as gr
import whisper
import os
from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer
from docx import Document
from reportlab.pdfgen import canvas
from reportlab.pdfbase.ttfonts import TTFont
from reportlab.pdfbase import pdfmetrics
from reportlab.lib.pagesizes import A4
import arabic_reshaper
from bidi.algorithm import get_display
from pptx import Presentation
import subprocess
import shlex
# Define available Whisper models
whisper_models = {
"Tiny (Fast, Less Accurate)": "tiny",
"Base (Medium Speed, Medium Accuracy)": "base",
"Small (Good Speed, Good Accuracy)": "small",
"Medium (Slow, High Accuracy)": "medium",
"Large (Very Slow, Highest Accuracy)": "large"
}
# Load M2M100 translation model for different languages
def load_translation_model(target_language):
lang_codes = {
"fa": "fa", # Persian (Farsi)
"es": "es", # Spanish
"fr": "fr", # French
"de": "de", # German
"it": "it", # Italian
"pt": "pt", # Portuguese
"ar": "ar", # Arabic
"zh": "zh", # Chinese
"hi": "hi", # Hindi
"ja": "ja", # Japanese
"ko": "ko", # Korean
"ru": "ru", # Russian
}
target_lang_code = lang_codes.get(target_language)
if not target_lang_code:
raise ValueError(f"Translation model for {target_language} not supported")
tokenizer = M2M100Tokenizer.from_pretrained("facebook/m2m100_418M")
translation_model = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_418M")
tokenizer.src_lang = "en"
tokenizer.tgt_lang = target_lang_code
return tokenizer, translation_model
def translate_text(text, tokenizer, model):
try:
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
translated = model.generate(**inputs, forced_bos_token_id=tokenizer.get_lang_id(tokenizer.tgt_lang))
return tokenizer.decode(translated[0], skip_special_tokens=True)
except Exception as e:
raise RuntimeError(f"Error during translation: {e}")
# Helper function to format timestamps in SRT format
def format_timestamp(seconds):
milliseconds = int((seconds % 1) * 1000)
seconds = int(seconds)
hours = seconds // 3600
minutes = (seconds % 3600) // 60
seconds = seconds % 60
return f"{hours:02}:{minutes:02}:{seconds:02},{milliseconds:03}"
# Corrected write_srt function
def write_srt(transcription, output_file, tokenizer=None, translation_model=None):
with open(output_file, "w") as f:
for i, segment in enumerate(transcription['segments']):
start = segment['start']
end = segment['end']
text = segment['text']
if translation_model:
text = translate_text(text, tokenizer, translation_model)
start_time = format_timestamp(start)
end_time = format_timestamp(end)
f.write(f"{i + 1}\n")
f.write(f"{start_time} --> {end_time}\n")
f.write(f"{text.strip()}\n\n")
# Embedding subtitles into video (hardsub)
def embed_hardsub_in_video(video_file, srt_file, output_video):
command = f'ffmpeg -i "{video_file}" -vf "subtitles=\'{srt_file}\'" -c:v libx264 -crf 23 -preset medium "{output_video}"'
try:
process = subprocess.run(shlex.split(command), capture_output=True, text=True, timeout=300)
if process.returncode != 0:
raise RuntimeError(f"ffmpeg error: {process.stderr}")
except subprocess.TimeoutExpired:
raise RuntimeError("ffmpeg process timed out.")
except Exception as e:
raise RuntimeError(f"Error running ffmpeg: {e}")
# Helper function to write Word documents
def write_word(transcription, output_file, tokenizer=None, translation_model=None, target_language=None):
doc = Document()
rtl = target_language == "fa"
for i, segment in enumerate(transcription['segments']):
text = segment['text']
if translation_model:
text = translate_text(text, tokenizer, translation_model)
para = doc.add_paragraph(f"{i + 1}. {text.strip()}")
if rtl:
para.paragraph_format.right_to_left = True
doc.save(output_file)
# Helper function to write PDF documents
def write_pdf(transcription, output_file, tokenizer=None, translation_model=None):
# Create PDF with A4 page size
c = canvas.Canvas(output_file, pagesize=A4)
app_dir = os.path.dirname(os.path.abspath(__file__))
# Register fonts
nazanin_font_path = os.path.join(app_dir, 'B-NAZANIN.TTF')
arial_font_path = os.path.join(app_dir, 'Arial.ttf')
if os.path.exists(nazanin_font_path):
pdfmetrics.registerFont(TTFont('B-Nazanin', nazanin_font_path))
if os.path.exists(arial_font_path):
pdfmetrics.registerFont(TTFont('Arial', arial_font_path))
y_position = A4[1] - 50
line_height = 20
for i, segment in enumerate(transcription['segments']):
text = segment['text']
if translation_model:
text = translate_text(text, tokenizer, translation_model)
line = f"{i + 1}. {text.strip()}"
target_language = tokenizer.tgt_lang if translation_model else None
if target_language in ['fa', 'ar']:
reshaped_text = arabic_reshaper.reshape(line)
bidi_text = get_display(reshaped_text)
c.setFont('B-Nazanin', 12)
c.drawRightString(A4[0] - 50, y_position, bidi_text)
else:
c.setFont('Arial', 12)
c.drawString(50, y_position, line)
if y_position < 50:
c.showPage()
y_position = A4[1] - 50
y_position -= line_height
c.save()
return output_file
# Helper function to write PowerPoint slides
def write_ppt(transcription, output_file, tokenizer=None, translation_model=None):
ppt = Presentation()
slide = ppt.slides.add_slide(ppt.slide_layouts[5])
text_buffer = ""
max_chars_per_slide = 400
for i, segment in enumerate(transcription['segments']):
text = segment['text']
if translation_model:
text = translate_text(text, tokenizer, translation_model)
line = f"{i + 1}. {text.strip()}\n"
if len(text_buffer) + len(line) > max_chars_per_slide:
slide.shapes.title.text = "Transcription"
textbox = slide.shapes.add_textbox(left=0, top=0, width=ppt.slide_width, height=ppt.slide_height)
textbox.text = text_buffer.strip()
slide = ppt.slides.add_slide(ppt.slide_layouts[5])
text_buffer = line
else:
text_buffer += line
if text_buffer:
slide.shapes.title.text = ""
textbox = slide.shapes.add_textbox(left=0, top=0, width=ppt.slide_width, height=ppt.slide_height)
textbox.text = text_buffer.strip()
ppt.save(output_file)
# Transcribing video and generating output
def transcribe_video(video_file, language, target_language, model_name, output_format):
actual_model_name = whisper_models[model_name] # Map user selection to model name
model = whisper.load_model(actual_model_name) # Load the selected model
if video_file is not None: # Ensure the video_file is not None
video_file_path = video_file.name
else:
raise ValueError("No video file provided. Please upload a video file.")
result = model.transcribe(video_file_path, language=language)
video_name = os.path.splitext(video_file_path)[0]
if target_language != "en":
try:
tokenizer, translation_model = load_translation_model(target_language)
except Exception as e:
raise RuntimeError(f"Error loading translation model: {e}")
else:
tokenizer, translation_model = None, None
srt_file = f"{video_name}.srt"
write_srt(result, srt_file, tokenizer, translation_model)
if output_format == "SRT":
return srt_file
elif output_format == "Video with Hardsub":
output_video = f"{video_name}_with_subtitles.mp4"
try:
embed_hardsub_in_video(video_file_path, srt_file, output_video)
return output_video
except Exception as e:
raise RuntimeError(f"Error embedding subtitles in video: {e}")
elif output_format == "Word":
word_file = f"{video_name}.docx"
write_word(result, word_file, tokenizer, translation_model, target_language)
return word_file
elif output_format == "PDF":
pdf_file = f"{video_name}.pdf"
write_pdf(result, pdf_file, tokenizer, translation_model)
return pdf_file
elif output_format == "PowerPoint":
ppt_file = f"{video_name}.pptx"
write_ppt(result, ppt_file, tokenizer, translation_model)
return ppt_file
else:
raise ValueError("Invalid output format selected.")
# Gradio Interface setup
iface = gr.Interface(
fn=transcribe_video,
inputs=[
gr.File(label="Upload Video File"),
gr.Dropdown(label="Select Original Video Language", choices=["en", "es", "fr", "de", "it", "pt"], value="en"),
gr.Dropdown(label="Select Subtitle Translation Language", choices=["en", "fa", "es", "de", "fr", "it", "pt"], value="fa"),
gr.Dropdown(label="Select Whisper Model", choices=list(whisper_models.keys()), value="Tiny (Fast, Less Accurate)"),
gr.Radio(label="Choose Output Format", choices=["SRT", "Video with Hardsub", "Word", "PDF", "PowerPoint"], value="Video with Hardsub")
],
outputs=gr.File(label="Download File"),
title="Video Subtitle Generator with Translation & Multi-Format Output",
description=(
"This tool allows you to generate subtitles from a video file, translate the subtitles into multiple languages using M2M100, "
"and export them in various formats including SRT, hardcoded subtitles in video, Word, PDF, or PowerPoint."
),
theme="compact",
live=False
)
# Run the interface
iface.launch(share=True) |