File size: 4,085 Bytes
5b2cc7a
 
d8f7287
3e0a809
d8f7287
 
 
 
 
c63740a
 
d8f7287
 
 
3e0a809
 
 
e6c2b25
d8f7287
e6c2b25
d8f7287
 
 
 
 
 
 
 
 
 
366a67c
d8f7287
 
 
 
 
 
5b2cc7a
 
 
d8f7287
 
 
 
5b2cc7a
d8f7287
5b2cc7a
d8f7287
 
 
5b2cc7a
d8f7287
 
 
 
3e0a809
c63740a
 
 
 
 
 
 
 
 
 
 
 
3e0a809
 
 
 
 
 
 
 
 
 
 
 
d8f7287
 
 
5b2cc7a
e6c2b25
 
 
3e0a809
 
 
 
e6c2b25
3e0a809
c63740a
95aa1d5
 
3e0a809
 
 
 
5b2cc7a
 
 
 
 
 
 
3e0a809
e6c2b25
 
 
 
366a67c
5b2cc7a
95aa1d5
 
 
 
d8f7287
 
5b2cc7a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import argparse
import os
import yaml
import time

from PIL import Image
import numpy as np
import torch

from diffusers import DiffusionPipeline

from cdim.noise import get_noise
from cdim.operators import get_operator
from cdim.image_utils import save_to_image
from cdim.dps_model.dps_unet import create_model
from cdim.diffusion.scheduling_ddim import DDIMScheduler
from cdim.diffusion.diffusion_pipeline import run_diffusion
from cdim.eta_scheduler import EtaScheduler

# torch.manual_seed(7)

def load_image(path):
    """
    Load the image and normalize to [-1, 1]
    """
    original_image = Image.open(path)

    # Resize if needed
    original_image = np.array(original_image.resize((256, 256), Image.BICUBIC))
    original_image = torch.from_numpy(original_image).unsqueeze(0).permute(0, 3, 1, 2)
    return (original_image / 127.5 - 1.0).to(torch.float)[:, :3]
    

def load_yaml(file_path: str) -> dict:
    with open(file_path) as f:
        config = yaml.load(f, Loader=yaml.FullLoader)
    return config


def main(args):
    device_str = f"cuda" if args.cuda and torch.cuda.is_available() else 'cpu'
    print(f"Using device {device_str}")
    device = torch.device(device_str) 

    os.makedirs(args.output_dir, exist_ok=True)
    original_image = load_image(args.input_image).to(device)

    # Load the noise function
    noise_config = load_yaml(args.noise_config)
    noise_function = get_noise(**noise_config)

    # Load the measurement function A
    operator_config = load_yaml(args.operator_config)
    operator_config["device"] = device
    operator = get_operator(**operator_config)

    if args.model_config.endswith(".yaml"):
        # Local model from DPS
        model_type = "dps"
        model_config = load_yaml(args.model_config)
        model = create_model(**model_config)
        model = model.to(device)
        model.eval()

    else:
        # Huggingface diffusers model
        model_type = "diffusers"
        model = DiffusionPipeline.from_pretrained(args.model_config).to("cuda").unet

    # All the models have the same scheduler.
    # you can change this for different models
    ddim_scheduler = DDIMScheduler(
        num_train_timesteps=1000,
        beta_start=0.0001,
        beta_end=0.02,
        beta_schedule="linear",
        prediction_type="epsilon",
        timestep_spacing="leading",
        steps_offset=0,
    )

    noisy_measurement = noise_function(operator(original_image))
    save_to_image(noisy_measurement, os.path.join(args.output_dir, "noisy_measurement.png"))

    eta_scheduler = EtaScheduler(args.eta_type, operator.name, args.T,
        args.K, args.loss, args.lambda_val)

    t0 = time.time()
    output_image = run_diffusion(
        model, ddim_scheduler,
        noisy_measurement, operator, noise_function, device,
        eta_scheduler,
        num_inference_steps=args.T,
        K=args.K,
        model_type=model_type,
        loss_type=args.loss)
    print(f"total time {time.time() - t0}")

    save_to_image(output_image, os.path.join(args.output_dir, "output.png"))

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument("input_image", type=str)
    parser.add_argument("T", type=int)
    parser.add_argument("K", type=int)
    parser.add_argument("operator_config", type=str)
    parser.add_argument("noise_config", type=str)
    parser.add_argument("model_config", type=str)
    parser.add_argument("--eta-type", type=str,
        choices=['gradnorm', 'expected_gradnorm'],
        default='expected_gradnorm')
    parser.add_argument("--lambda-val", type=float,
        default=None, help="Constant to scale learning rate. Leave empty to use a heuristic best guess.")
    parser.add_argument("--output-dir", default=".", type=str)
    parser.add_argument("--loss", type=str,
        choices=['l2', 'kl', 'categorical_kl'], default='l2',
        help="Algorithm to use. Options: 'l2', 'kl', 'categorical_kl'. Default is 'l2'."
    )
    parser.add_argument("--cuda", default=True, action=argparse.BooleanOptionalAction)

    main(parser.parse_args())