File size: 3,412 Bytes
5b2cc7a
 
d8f7287
3e0a809
d8f7287
 
 
 
 
c63740a
 
d8f7287
 
 
3e0a809
 
 
d8f7287
3e0a809
d8f7287
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b2cc7a
 
 
d8f7287
 
 
 
5b2cc7a
d8f7287
5b2cc7a
d8f7287
 
 
5b2cc7a
d8f7287
 
 
 
3e0a809
c63740a
 
 
 
 
 
 
 
 
 
 
 
3e0a809
 
 
 
 
 
 
 
 
 
 
 
d8f7287
 
 
5b2cc7a
3e0a809
 
 
 
 
c63740a
 
3e0a809
 
 
 
5b2cc7a
 
 
 
 
 
 
 
3e0a809
5b2cc7a
d8f7287
 
5b2cc7a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import argparse
import os
import yaml
import time

from PIL import Image
import numpy as np
import torch

from diffusers import DiffusionPipeline

from cdim.noise import get_noise
from cdim.operators import get_operator
from cdim.image_utils import save_to_image
from cdim.dps_model.dps_unet import create_model
from cdim.diffusion.scheduling_ddim import DDIMScheduler
from cdim.diffusion.diffusion_pipeline import run_diffusion

torch.manual_seed(8)

def load_image(path):
    """
    Load the image and normalize to [-1, 1]
    """
    original_image = Image.open(path)

    # Resize if needed
    original_image = np.array(original_image.resize((256, 256), Image.BICUBIC))
    original_image = torch.from_numpy(original_image).unsqueeze(0).permute(0, 3, 1, 2)
    return (original_image / 127.5 - 1.0).to(torch.float)
    

def load_yaml(file_path: str) -> dict:
    with open(file_path) as f:
        config = yaml.load(f, Loader=yaml.FullLoader)
    return config


def main(args):
    device_str = f"cuda" if args.cuda and torch.cuda.is_available() else 'cpu'
    print(f"Using device {device_str}")
    device = torch.device(device_str) 

    os.makedirs(args.output_dir, exist_ok=True)
    original_image = load_image(args.input_image).to(device)

    # Load the noise function
    noise_config = load_yaml(args.noise_config)
    noise_function = get_noise(**noise_config)

    # Load the measurement function A
    operator_config = load_yaml(args.operator_config)
    operator_config["device"] = device
    operator = get_operator(**operator_config)

    if args.model_config.endswith(".yaml"):
        # Local model from DPS
        model_type = "dps"
        model_config = load_yaml(args.model_config)
        model = create_model(**model_config)
        model = model.to(device)
        model.eval()

    else:
        # Huggingface diffusers model
        model_type = "diffusers"
        model = DiffusionPipeline.from_pretrained(args.model_config).to("cuda").unet

    # All the models have the same scheduler.
    # you can change this for different models
    ddim_scheduler = DDIMScheduler(
        num_train_timesteps=1000,
        beta_start=0.0001,
        beta_end=0.02,
        beta_schedule="linear",
        prediction_type="epsilon",
        timestep_spacing="leading",
        steps_offset=0,
    )

    noisy_measurement = noise_function(operator(original_image))
    save_to_image(noisy_measurement, os.path.join(args.output_dir, "noisy_measurement.png"))

    t0 = time.time()
    output_image = run_diffusion(
        model, ddim_scheduler,
        noisy_measurement, operator, noise_function, device,
        num_inference_steps=args.T,
        K=args.K,
        model_type=model_type)
    print(f"total time {time.time() - t0}")

    save_to_image(output_image, os.path.join(args.output_dir, "output.png"))

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument("input_image", type=str)
    parser.add_argument("T", type=int)
    parser.add_argument("K", type=int)
    parser.add_argument("model", type=str)
    parser.add_argument("operator_config", type=str)
    parser.add_argument("noise_config", type=str)
    parser.add_argument("model_config", type=str)
    parser.add_argument("--output-dir", default=".", type=str)
    parser.add_argument("--cuda", default=True, action=argparse.BooleanOptionalAction)

    main(parser.parse_args())