Spaces:
Sleeping
Sleeping
from abc import ABC, abstractmethod | |
from nervaluate import Evaluator | |
from sklearn.metrics import classification_report | |
from token_level_output import get_token_output_labels | |
class EvaluationMetric(ABC): | |
"""Base class defining the attributes & methods of an evaluation metric""" | |
name: str | |
description: str | |
def get_evaluation_metric(gt_ner_span, pred_ner_span, text, tags) -> float: | |
pass | |
class PartialSpanOverlapMetric(EvaluationMetric): | |
def __init__(self) -> None: | |
super().__init__() | |
self.name = "Span Based Evaluation with Partial Overlap" | |
self.description = "" | |
def get_evaluation_metric(gt_ner_span, pred_ner_span, text, tags) -> float: | |
evaluator = Evaluator([gt_ner_span], [pred_ner_span], tags=tags) | |
return round(evaluator.evaluate()[0]["ent_type"]["f1"], 2) | |
class ExactSpanOverlapMetric(EvaluationMetric): | |
def __init__(self) -> None: | |
super().__init__() | |
self.name = "Span Based Evaluation with Exact Overlap" | |
self.description = "" | |
def get_evaluation_metric(gt_ner_span, pred_ner_span, text, tags) -> float: | |
evaluator = Evaluator([gt_ner_span], [pred_ner_span], tags=tags) | |
return round(evaluator.evaluate()[0]["strict"]["f1"], 2) | |
class TokenMicroMetric(EvaluationMetric): | |
def __init__(self) -> None: | |
super().__init__() | |
self.name = "Span Based Evaluation with Micro Average" | |
self.description = "" | |
def get_evaluation_metric(gt_ner_span, pred_ner_span, text, tags) -> float: | |
return round( | |
classification_report( | |
get_token_output_labels(gt_ner_span, text), | |
get_token_output_labels(pred_ner_span, text), | |
labels=tags, | |
output_dict=True, | |
)["micro avg"]["f1-score"], | |
2, | |
) | |
class TokenMacroMetric(EvaluationMetric): | |
def __init__(self) -> None: | |
super().__init__() | |
self.name = "Token Based Evaluation with Macro Average" | |
self.description = "" | |
def get_evaluation_metric(gt_ner_span, pred_ner_span, text, tags) -> float: | |
return round( | |
classification_report( | |
get_token_output_labels(gt_ner_span, text), | |
get_token_output_labels(pred_ner_span, text), | |
labels=tags, | |
output_dict=True, | |
)["macro avg"]["f1-score"], | |
2, | |
) | |
EVALUATION_METRICS = [ | |
PartialSpanOverlapMetric(), | |
ExactSpanOverlapMetric(), | |
TokenMicroMetric(), | |
TokenMacroMetric(), | |
] | |