Spaces:
Sleeping
Sleeping
""" | |
There are 4 data formats for spans | |
1. annotations - this is what we obtain from the text_annotator, the format can be seen in the predefined_examples, gt_labels | |
2. higlight_spans - this is the format used by the highlighter to return the highlighted html text. This is a list of string/tuples("string", "label", color) | |
3. ner_spans - this is the standard format used for representing ner_spans, it is a dict of {"start":int, "end":int, "label":str, "span_text":str} | |
4. Token level output - this is delt with in the token_level_output file, this is either a list of tuples with [(token, label)] or just a list of [label, label] | |
""" | |
def get_ner_spans_from_annotations(annotated_labels): | |
spans = [] | |
for entity_type, spans_list in annotated_labels.items(): | |
for spans_dict in spans_list: | |
ner_span_dict = { | |
**spans_dict, | |
"label": entity_type, | |
"span_text": spans_dict["label"], | |
} | |
spans.append(ner_span_dict) | |
return spans | |
def get_highlight_spans_from_ner_spans(ner_spans, parent_text): | |
if not ner_spans: | |
return [parent_text] | |
output_list = [] | |
prev_span_end = 0 | |
# output_list = [parent_text[ner_spans[0]["start"]]] | |
for span in ner_spans: | |
output_list.append(parent_text[prev_span_end : span["start"]]) | |
tup = (span["span_text"], span["label"]) | |
output_list.append(tup) | |
prev_span_end = span["end"] | |
if prev_span_end != len(parent_text): | |
output_list.append(parent_text[prev_span_end:]) | |
return output_list | |