|
--- |
|
title: README |
|
emoji: 🏃 |
|
colorFrom: red |
|
colorTo: yellow |
|
sdk: static |
|
pinned: false |
|
--- |
|
<img src="https://github.com/dome272/Wuerstchen/assets/61938694/0617c863-165a-43ee-9303-2a17299a0cf9"> |
|
Welcome to <b>WARP</b>. This is our little organization for multimodal generative models, focusing on the visual domain. We have been working with generative image models a lot and |
|
will soon work on video models as well. Our main team consists of: |
|
|
|
- [Pablo Pernias](https://github.com/pabloppp/) |
|
- [Dominic Rampas](https://github.com/dome272) |
|
- [Marc Aubreville](https://www.linkedin.com/in/marc-aubreville-48a977120/?locale=en_US) |
|
- [Mats L. Richter](https://scholar.google.com/citations?user=xtlV5SAAAAAJ&hl=de) |
|
|
|
A special thanks to the Huggingface Team for helping to bring our research to Diffusers! (Special thanks to [Kashif](https://github.com/kashif/), [Patrick](https://github.com/patrickvonplaten) and [Sayak](https://github.com/sayakpaul)!) |
|
|
|
|
|
Feel free to join our [Discord](https://discord.gg/BTUAzb8vFY) channel! |
|
|
|
Models: |
|
<details> |
|
<summary> |
|
Paella |
|
</summary> |
|
<img src="https://user-images.githubusercontent.com/61938694/231021615-38df0a0a-d97e-4f7a-99d9-99952357b4b1.png" width=1200> |
|
<ul> |
|
<li>A simple & straightforward text-conditional image generation model that works on quantized latents.</li> |
|
<li>More details can be found in the <a href="https://arxiv.org/abs/2211.07292v2">paper</a>, the <a href="https://laion.ai/blog/paella/">blog post</a> and the <a href="https://www.youtube.com/watch?v=zdE1I6kYKYc">YouTube video</a>.</li> |
|
<li>Only accessible through <a href="https://github.com/dome272/Paella">GitHub</a>.</li> |
|
</ul> |
|
</details> |
|
|
|
<details> |
|
<summary> |
|
Würstchen |
|
</summary> |
|
<img src="https://github.com/dome272/Wuerstchen/assets/61938694/647b6781-8b07-4467-ad7d-9932d0069aa3"> |
|
<ul> |
|
<li>An efficient text-to-image model to train and use for inference. Achieves competetive performance to state-of-the-art methods, while needing only a fraction of the compute.</li> |
|
<li>More details can be found in the <a href="https://arxiv.org/abs/2306.006372">paper</a>.</li> |
|
<li>Versions:</li> |
|
<ul> |
|
<li>v1: Only accessible through <a href="https://github.com/dome272/Wuerstchen/">GitHub</a>.</li> |
|
<li>v2: Accessible through <a href="https://github.com/dome272/Wuerstchen/">GitHub</a> and <a href="https://huggingface.co/docs/diffusers/main/en/api/pipelines/wuerstchen">Diffusers</a</li> |
|
</ul> |
|
</ul> |
|
</details> |
|
|