textgraphs / app.py
Paco Nathan
A new start
91eaff6
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# pylint: disable=C0301
"""
HuggingFace Spaces demo of the `TextGraphs` library using Streamlit
see copyright/license https://huggingface.co/spaces/DerwenAI/textgraphs/blob/main/README.md
"""
import pathlib
import time
import typing
import matplotlib.pyplot as plt # pylint: disable=E0401
import pandas as pd # pylint: disable=E0401
import pyvis # pylint: disable=E0401
import spacy # pylint: disable=E0401
import streamlit as st # pylint: disable=E0401
import textgraphs
if __name__ == "__main__":
# default text input
SRC_TEXT: str = """
Werner Herzog is a remarkable filmmaker and intellectual originally from Germany, the son of Dietrich Herzog.
"""
# store the initial value of widgets in session state
if "visibility" not in st.session_state:
st.session_state.visibility = "visible"
st.session_state.disabled = False
with st.container():
st.title("demo: TextGraphs + LLMs to construct a 'lemma graph'")
st.markdown(
"""
docs: <https://derwen.ai/docs/txg/>
&nbsp; &nbsp;
DOI: 10.5281/zenodo.10431783
""",
unsafe_allow_html = True,
)
# collect input + config
st.subheader("configure", divider = "rainbow")
text_input: str = st.text_area(
"Source Text:",
value = SRC_TEXT.strip(),
)
llm_ner = st.checkbox(
"enhance spaCy NER using: SpanMarker",
value = False,
)
link_ents = st.checkbox(
"link entities using: DBPedia Spotlight, WikiMedia API",
value = False,
)
infer_rel = st.checkbox(
"infer relations using: REBEL, OpenNRE, qwikidata",
value = False,
)
if text_input or llm_ner or link_ents or infer_rel:
## parse the document
st.subheader("parse the raw text", divider = "rainbow")
start_time: float = time.time()
# generally it is fine to use factory defaults,
# although let's illustrate these settings here
infer_rels: list = []
if infer_rel:
with st.spinner(text = "load rel models..."):
infer_rels = [
textgraphs.InferRel_OpenNRE(
model = textgraphs.OPENNRE_MODEL,
max_skip = textgraphs.MAX_SKIP,
min_prob = textgraphs.OPENNRE_MIN_PROB,
),
textgraphs.InferRel_Rebel(
lang = "en_XX",
mrebel_model = textgraphs.MREBEL_MODEL,
),
]
ner: typing.Optional[ textgraphs.Component ] = None
if llm_ner:
ner = textgraphs.NERSpanMarker(
ner_model = textgraphs.NER_MODEL,
)
tg: textgraphs.TextGraphs = textgraphs.TextGraphs(
factory = textgraphs.PipelineFactory(
spacy_model = textgraphs.SPACY_MODEL,
ner = ner,
kg = textgraphs.KGWikiMedia(
spotlight_api = textgraphs.DBPEDIA_SPOTLIGHT_API,
dbpedia_search_api = textgraphs.DBPEDIA_SEARCH_API,
dbpedia_sparql_api = textgraphs.DBPEDIA_SPARQL_API,
wikidata_api = textgraphs.WIKIDATA_API,
min_alias = textgraphs.DBPEDIA_MIN_ALIAS,
min_similarity = textgraphs.DBPEDIA_MIN_SIM,
),
infer_rels = infer_rels,
),
)
duration: float = round(time.time() - start_time, 3)
st.write(f"set up: {round(duration, 3)} sec")
with st.spinner(text = "parse text..."):
start_time = time.time()
pipe: textgraphs.Pipeline = tg.create_pipeline(
text_input.strip(),
)
duration = round(time.time() - start_time, 3)
st.write(f"parse text: {round(duration, 3)} sec, {len(text_input)} characters")
# render the entity html
ent_html: str = spacy.displacy.render(
pipe.ner_doc,
style = "ent",
jupyter = False,
)
st.markdown(
ent_html,
unsafe_allow_html = True,
)
# generate dependencies as an SVG
dep_svg = spacy.displacy.render(
pipe.ner_doc,
style = "dep",
jupyter = False,
)
st.image(
dep_svg,
width = 800,
use_column_width = "never",
)
## collect graph elements from the parse
st.subheader("construct the base level of the lemma graph", divider = "rainbow")
start_time = time.time()
tg.collect_graph_elements(
pipe,
debug = False,
)
duration = round(time.time() - start_time, 3)
st.write(f"collect elements: {round(duration, 3)} sec, {len(tg.nodes)} nodes, {len(tg.edges)} edges")
## perform entity linking
if link_ents:
st.subheader("extract entities and perform entity linking", divider = "rainbow")
with st.spinner(text = "entity linking..."):
start_time = time.time()
tg.perform_entity_linking(
pipe,
debug = False,
)
duration = round(time.time() - start_time, 3)
st.write(f"entity linking: {round(duration, 3)} sec")
## perform relation extraction
if infer_rel:
st.subheader("infer relations", divider = "rainbow")
st.write("NB: this part runs an order of magnitude more *slooooooowly* on HF Spaces")
with st.spinner(text = "relation extraction..."):
start_time = time.time()
# NB: run this iteratively since Streamlit on HF Spaces is *sloooooooooow*
inferred_edges: list = tg.infer_relations(
pipe,
debug = False,
)
duration = round(time.time() - start_time, 3)
n_list: list = list(tg.nodes.values())
df_rel: pd.DataFrame = pd.DataFrame.from_dict([
{
"src": n_list[edge.src_node].text,
"dst": n_list[edge.dst_node].text,
"rel": edge.rel,
"weight": edge.prob,
}
for edge in inferred_edges
])
st.dataframe(df_rel)
st.write(f"relation extraction: {round(duration, 3)} sec, {len(df_rel)} edges")
## construct the _lemma graph_
start_time = time.time()
tg.construct_lemma_graph(
debug = False,
)
duration = round(time.time() - start_time, 3)
st.write(f"construct graph: {round(duration, 3)} sec")
## rank the extracted phrases
st.subheader("rank the extracted phrases", divider = "rainbow")
start_time = time.time()
tg.calc_phrase_ranks(
pr_alpha = textgraphs.PAGERANK_ALPHA,
debug = False,
)
df_ent: pd.DataFrame = tg.get_phrases_as_df()
duration = round(time.time() - start_time, 3)
st.write(f"extract: {round(duration, 3)} sec, {len(df_ent)} entities")
st.dataframe(df_ent)
## generate a word cloud
st.subheader("generate a word cloud", divider = "rainbow")
render: textgraphs.RenderPyVis = tg.create_render()
wordcloud = render.generate_wordcloud()
st.image(
wordcloud.to_image(),
width = 700,
use_column_width = "never",
)
## visualize the lemma graph
st.subheader("visualize the lemma graph", divider = "rainbow")
st.markdown(
"""
what you get at this stage is a relatively noisy,
low-level detailed graph of the parsed text
the most interesting nodes will probably be either
subjects (`nsubj`) or direct objects (`pobj`)
"""
)
pv_graph: pyvis.network.Network = render.render_lemma_graph(
debug = False,
)
pv_graph.force_atlas_2based(
gravity = -38,
central_gravity = 0.01,
spring_length = 231,
spring_strength = 0.7,
damping = 0.8,
overlap = 0,
)
pv_graph.show_buttons(filter_ = [ "physics" ])
pv_graph.toggle_physics(True)
py_html: pathlib.Path = pathlib.Path("vis.html")
pv_graph.save_graph(py_html.as_posix())
st.components.v1.html(
py_html.read_text(encoding = "utf-8"),
height = render.HTML_HEIGHT_WITH_CONTROLS,
scrolling = False,
)
## cluster the communities
st.subheader("cluster the communities", divider = "rainbow")
st.markdown(
"""
<details>
<summary><strong>About this clustering...</strong></summary>
<p>
In the tutorial
<a href="https://towardsdatascience.com/how-to-convert-any-text-into-a-graph-of-concepts-110844f22a1a" target="_blank">"How to Convert Any Text Into a Graph of Concepts"</a>,
Rahul Nayak uses the
<a href="https://en.wikipedia.org/wiki/Girvan%E2%80%93Newman_algorithm"><em>girvan-newman</em></a>
algorithm to split the graph into communities, then clusters on those communities.
His approach works well for unsupervised clustering of key phrases which have been extracted from a collection of many documents.
</p>
<p>
While Nayak was working with entities extracted from "chunks" of text, not with a text graph per se, this approach is useful for identifying network motifs which can be condensed, e.g., to extract a semantic graph overlay as an <em>abstraction layer</em> atop a lemma graph.
</p>
</details>
<br/>
""",
unsafe_allow_html = True,
)
spring_dist_val = st.slider(
"spring distance for NetworkX clusters",
min_value = 0.0,
max_value = 10.0,
value = 1.2,
)
if spring_dist_val:
start_time = time.time()
fig, ax = plt.subplots()
comm_map: dict = render.draw_communities(
spring_distance = spring_dist_val,
)
st.pyplot(fig)
duration = round(time.time() - start_time, 3)
st.write(f"cluster: {round(duration, 3)} sec, {max(comm_map.values()) + 1} clusters")
## transform a graph of relations
st.subheader("transform as a graph of relations", divider = "rainbow")
st.markdown(
"""
Using the topological transform given in `lee2023ingram`, construct a
_graph of relations_ for enhancing graph inference.
<details>
<summary><strong>What does this transform provide?</strong></summary>
<p>
By using a <em>graph of relations</em> dual representation of our graph data, first and foremost we obtain a more compact representation of the relations in the graph, and means of making inferences (e.g., <em>link prediction</em>) where there is substantially more invariance in the training data.
</p>
<p>
Also recognize that for a parse graph of a paragraph in the English language, the most interesting nodes will probably be either subjects (<code>nsubj</code>) or direct objects (<code>pobj</code>). Here in the <em>graph of relations</em> we can see illustrated how the important details from <em>entity linking</em> tend to cluster near either <code>nsubj</code> or <code>pobj</code> entities, connected through punctuation. This aspect is not as readily observed in the earlier visualization of the <em>lemma graph</em>.
</p>
</details>
""",
unsafe_allow_html = True,
)
start_time = time.time()
gor: textgraphs.GraphOfRelations = textgraphs.GraphOfRelations(tg)
gor.seeds()
gor.construct_gor()
scores: typing.Dict[ tuple, float ] = gor.get_affinity_scores()
pv_graph = gor.render_gor_pyvis(scores)
pv_graph.force_atlas_2based(
gravity = -38,
central_gravity = 0.01,
spring_length = 231,
spring_strength = 0.7,
damping = 0.8,
overlap = 0,
)
pv_graph.show_buttons(filter_ = [ "physics" ])
pv_graph.toggle_physics(True)
py_html = pathlib.Path("gor.html")
pv_graph.save_graph(py_html.as_posix())
st.components.v1.html(
py_html.read_text(encoding = "utf-8"),
height = render.HTML_HEIGHT_WITH_CONTROLS,
scrolling = False,
)
duration = round(time.time() - start_time, 3)
st.write(f"transform: {round(duration, 3)} sec, {len(gor.rel_list)} relations")
## download lemma graph
st.subheader("download the results", divider = "rainbow")
st.markdown(
"""
Download a serialized <em>lemma graph</em> in multiple formats:
""",
unsafe_allow_html = True,
)
col1, col2, col3 = st.columns(3)
with col1:
st.download_button(
label = "download node-link",
data = tg.dump_lemma_graph(),
file_name = "lemma_graph.json",
mime = "application/json",
)
st.markdown(
"""
<a href="https://networkx.org/documentation/stable/reference/readwrite/generated/networkx.readwrite.json_graph.node_link_data.html" target="_blank"><em>node-link</em></a>: JSON data suitable for import to <a href="https://neo4j.com/docs/getting-started/data-import/csv-import/" target="_blank"><em>Neo4j</em></a>, <a href="https://networkx.org/documentation/stable/reference/readwrite/generated/networkx.readwrite.json_graph.node_link_graph.html#networkx.readwrite.json_graph.node_link_graph" target="_blank"><em>NetworkX</em></a>, etc.
""",
unsafe_allow_html = True,
)
with col2:
st.download_button(
label = "download RDF",
data = tg.export_rdf(),
file_name = "lemma_graph.ttl",
mime = "text/turtle",
)
st.markdown(
"""
<a href="https://www.w3.org/TR/turtle/" target="_blank"><em>Turtle/N3</em></a>: W3C semantic graph representation, based on RDF, OWL, SKOS, etc.
""",
unsafe_allow_html = True,
)
with col3:
st.download_button(
label = "download KùzuDB",
data = tg.export_kuzu(zip_name = "lemma_graph.zip"),
file_name = "lemma.zip",
mime = "application/x-zip-compressed",
)
st.markdown(
"""
<a href="https://opencypher.org/" target="_blank"><em>openCypher</em></a>: ZIP file of a labeled property graph in <a href="https://kuzudb.com/" target="_blank"><em>KùzuDB</em></a>
""",
unsafe_allow_html = True,
)
## WIP
st.divider()
st.write("(WIP)")
thanks: str = """
This demo has completed, and thank you for running a Derwen space!
"""
st.toast(
thanks,
icon ="😍",
)