smile-start / app.py
whyumesh's picture
Update app.py
a18a9a0 verified
raw
history blame
1.39 kB
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
import torch
import gradio as gr
from peft import PeftModel, PeftConfig
import spaces
# Use the GPU if available
device = 0 if torch.cuda.is_available() else -1
def load_model():
# Load the base model and tokenizer
base_model_name = "Qwen/Qwen2.5-1.5B-Instruct"
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
base_model = AutoModelForCausalLM.from_pretrained(base_model_name)
# Load the PEFT adapter
peft_model = PeftModel.from_pretrained(
base_model,
"ombhojane/smile-small",
)
return pipeline(
"text-generation",
model=peft_model,
tokenizer=tokenizer,
device=device
)
pipe = load_model()
@spaces.GPU
def generate_response(message):
messages = [
{"role": "user", "content": message}
]
# Generate longer output text
generated_text = pipe(messages, max_new_tokens=200, num_return_sequences=1)
return generated_text[0]['generated_text']
# Create Gradio interface
demo = gr.Interface(
fn=generate_response,
inputs=gr.Textbox(lines=2, placeholder="Enter your message here..."),
outputs=gr.Textbox(lines=5),
title="Text Generation App",
description="Enter a prompt and get AI-generated text response"
)
# Launch the app
if __name__ == "__main__":
demo.launch()