|
from langchain import HuggingFaceHub |
|
|
|
from dotenv import load_dotenv |
|
|
|
import streamlit as st |
|
|
|
|
|
load_dotenv() |
|
|
|
|
|
llm_huggingface = HuggingFaceHub(repo_id="google/flan-t5-large", model_kwargs={"temperature": 0.0, "max_length": 64}) |
|
|
|
|
|
st.set_page_config(page_title="Chatbot") |
|
st.header('Langchain Application') |
|
|
|
|
|
def get_huggingface_response(question): |
|
response = llm_huggingface(question) |
|
return response |
|
|
|
|
|
user_input = st.text_input("Input: ", key="input") |
|
|
|
|
|
submit = st.button('Generate') |
|
|
|
|
|
if submit: |
|
|
|
response = get_huggingface_response(user_input) |
|
st.subheader("The response is ") |
|
st.write(response) |
|
|