Spaces:
Paused
Paused
import re | |
import time | |
import torch | |
from transformers import DonutProcessor, VisionEncoderDecoderModel | |
from config import settings | |
from functools import lru_cache | |
import os | |
def load_model(): | |
processor = DonutProcessor.from_pretrained(settings.processor) | |
model = VisionEncoderDecoderModel.from_pretrained(settings.model) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model.to(device) | |
return processor, model, device | |
def process_document_donut(image): | |
worker_pid = os.getpid() | |
print(f"Handling inference request with worker PID: {worker_pid}") | |
start_time = time.time() | |
processor, model, device = load_model() | |
# prepare encoder inputs | |
pixel_values = processor(image, return_tensors="pt").pixel_values | |
# prepare decoder inputs | |
task_prompt = "<s_cord-v2>" | |
decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids | |
# generate answer | |
outputs = model.generate( | |
pixel_values.to(device), | |
decoder_input_ids=decoder_input_ids.to(device), | |
max_length=model.decoder.config.max_position_embeddings, | |
early_stopping=True, | |
pad_token_id=processor.tokenizer.pad_token_id, | |
eos_token_id=processor.tokenizer.eos_token_id, | |
use_cache=True, | |
num_beams=1, | |
bad_words_ids=[[processor.tokenizer.unk_token_id]], | |
return_dict_in_generate=True, | |
) | |
# postprocess | |
sequence = processor.batch_decode(outputs.sequences)[0] | |
sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "") | |
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token | |
end_time = time.time() | |
processing_time = end_time - start_time | |
print(f"Inference done, worker PID: {worker_pid}") | |
return processor.token2json(sequence), processing_time |