Spaces:
Running
Running
File size: 24,783 Bytes
6df09d4 cc747c7 19beb37 441f7d7 c75f477 e4b090f 6df09d4 fb4cfa0 6df09d4 f99f51e 6df09d4 d41b61c 6df09d4 6297c37 62cfb78 6297c37 6df09d4 003e19f 07bbcca 6df09d4 b622897 1a6c097 f713a6a 6df09d4 48fc2fd 6297c37 62cfb78 6297c37 78d398a 19beb37 78d398a 19beb37 6df09d4 48fc2fd 5cf6cc6 6233420 ada257d 6233420 6b2f023 0c76d9a 6233420 19beb37 30c45be 0f3b466 6233420 0f3b466 b90acdd a56f24f 19beb37 6233420 ada257d 65876cc a16c42d 7b43755 a16c42d a046672 48fc2fd 19beb37 127b572 41ea5fc 19beb37 441f7d7 7980d1c 6df09d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 |
import argparse
import os
from rdkit import Chem
import sys
import joblib
sys.modules['sklearn.externals.joblib'] = joblib
from sklearn.externals import joblib
import numpy as np
from rdkit.Chem import Descriptors
from rdkit.Chem import rdMolDescriptors
from xgboost.sklearn import XGBClassifier,XGBRegressor
import torch
import torch.nn.functional as F
from torch.autograd import Variable
from rdkit.Chem import MACCSkeys
import torch.nn as nn
import lightgbm as lgb
from sklearn.ensemble import RandomForestRegressor
import wget
import warnings
import gradio as gr
import pandas as pd
from matplotlib.backends.backend_agg import FigureCanvasAgg
import PIL.Image as Image
import matplotlib.pyplot as plt
import pandas as pd
import time
warnings.filterwarnings("ignore")
Eluent_smiles=['CCCCCC','CC(OCC)=O','C(Cl)Cl','CO','CCOCC']
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--file_path', type=str, default=os.getcwd()+'\TLC_dataset.xlsx', help='path of download dataset')
parser.add_argument('--dipole_path', type=str, default=os.getcwd() + '\compound_list_带化合物分类.xlsx',
help='path of dipole file')
parser.add_argument('--data_range', type=int, default=4944, help='utilized data range,robot:4114,manual:4458,new:4944')
parser.add_argument('--automatic_divide', type=bool, default=False, help='automatically divide dataset by 80% train,10% validate and 10% test')
parser.add_argument('--choose_total', type=int, default=387, help='train total num,robot:387,manual:530')
parser.add_argument('--choose_train', type=int, default=308, help='train num,robot:387,manual:530')
parser.add_argument('--choose_validate', type=int, default=38, help='validate num')
parser.add_argument('--choose_test', type=int, default=38, help='test num')
parser.add_argument('--seed', type=int, default=324, help='random seed for split dataset')
parser.add_argument('--torch_seed', type=int, default=324, help='random seed for torch')
parser.add_argument('--add_dipole', type=bool, default=True, help='add dipole into dataset')
parser.add_argument('--add_molecular_descriptors', type=bool, default=True, help='add molecular_descriptors (分子量(MW)、拓扑极性表面积(TPSA)、可旋转键的个数(NROTB)、氢键供体个数(HBA)、氢键受体个数(HBD)、脂水分配系数值(LogP)) into dataset')
parser.add_argument('--add_MACCkeys', type=bool, default=True,help='add MACCSkeys into dataset')
parser.add_argument('--add_eluent_matrix', type=bool, default=True,help='add eluent matrix into dataset')
parser.add_argument('--test_mode', type=str, default='robot', help='manual data or robot data or fix, costum test data')
parser.add_argument('--use_model', type=str, default='Ensemble',help='the utilized model (XGB,LGB,ANN,RF,Ensemble,Bayesian)')
parser.add_argument('--download_data', type=bool, default=False, help='use local dataset or download from dataset')
parser.add_argument('--use_sigmoid', type=bool, default=True, help='use sigmoid')
parser.add_argument('--shuffle_array', type=bool, default=True, help='shuffle_array')
parser.add_argument('--characterization_mode', type=str, default='standard',
help='the characterization mode for the dataset, including standard, precise_TPSA, no_multi')
#---------------parapmeters for plot---------------------
parser.add_argument('--plot_col_num', type=int, default=4, help='The col_num in plot')
parser.add_argument('--plot_row_num', type=int, default=4, help='The row_num in plot')
parser.add_argument('--plot_importance_num', type=int, default=10, help='The max importance num in plot')
#--------------parameters For LGB-------------------
parser.add_argument('--LGB_max_depth', type=int, default=5, help='max_depth for LGB')
parser.add_argument('--LGB_num_leaves', type=int, default=25, help='num_leaves for LGB')
parser.add_argument('--LGB_learning_rate', type=float, default=0.007, help='learning_rate for LGB')
parser.add_argument('--LGB_n_estimators', type=int, default=1000, help='n_estimators for LGB')
parser.add_argument('--LGB_early_stopping_rounds', type=int, default=200, help='early_stopping_rounds for LGB')
#---------------parameters for XGB-----------------------
parser.add_argument('--XGB_n_estimators', type=int, default=200, help='n_estimators for XGB')
parser.add_argument('--XGB_max_depth', type=int, default=3, help='max_depth for XGB')
parser.add_argument('--XGB_learning_rate', type=float, default=0.1, help='learning_rate for XGB')
#---------------parameters for RF------------------------
parser.add_argument('--RF_n_estimators', type=int, default=1000, help='n_estimators for RF')
parser.add_argument('--RF_random_state', type=int, default=1, help='random_state for RF')
parser.add_argument('--RF_n_jobs', type=int, default=1, help='n_jobs for RF')
#--------------parameters for ANN-----------------------
parser.add_argument('--NN_hidden_neuron', type=int, default=128, help='hidden neurons for NN')
parser.add_argument('--NN_optimizer', type=str, default='Adam', help='optimizer for NN (Adam,SGD,RMSprop)')
parser.add_argument('--NN_lr', type=float, default=0.005, help='learning rate for NN')
parser.add_argument('--NN_model_save_location', type=str, default=os.getcwd()+'\model_save_NN', help='learning rate for NN')
parser.add_argument('--NN_max_epoch', type=int, default=5000, help='max training epoch for NN')
parser.add_argument('--NN_add_sigmoid', type=bool, default=True, help='whether add sigmoid in NN')
parser.add_argument('--NN_add_PINN', type=bool, default=False, help='whether add PINN in NN')
parser.add_argument('--NN_epi', type=float, default=100.0, help='The coef of PINN Loss in NN')
config = parser.parse_args()
config.device = 'cpu'
return config
class ANN(nn.Module):
'''
Construct artificial neural network
'''
def __init__(self, in_neuron, hidden_neuron, out_neuron,config):
super(ANN, self).__init__()
self.input_layer = nn.Linear(in_neuron, hidden_neuron)
self.hidden_layer = nn.Linear(hidden_neuron, hidden_neuron)
self.output_layer = nn.Linear(hidden_neuron, out_neuron)
self.NN_add_sigmoid=config.NN_add_sigmoid
def forward(self, x):
x = self.input_layer(x)
x = F.leaky_relu(x)
x = self.hidden_layer(x)
x = F.leaky_relu(x)
x = self.hidden_layer(x)
x = F.leaky_relu(x)
x = self.hidden_layer(x)
x = F.leaky_relu(x)
x = self.output_layer(x)
if self.NN_add_sigmoid==True:
x = F.sigmoid(x)
return x
class Model_ML():
def __init__(self,config,X_test):
super(Model_ML, self).__init__()
self.X_test=X_test
self.seed=config.seed
self.torch_seed=config.seed
self.config=config
self.add_dipole = config.add_dipole
self.add_molecular_descriptors = config.add_molecular_descriptors
self.add_eluent_matrix=config.add_eluent_matrix
self.use_sigmoid=config.use_sigmoid
self.use_model=config.use_model
self.LGB_max_depth=config.LGB_max_depth
self.LGB_num_leaves=config.LGB_num_leaves
self.LGB_learning_rate=config.LGB_learning_rate
self.LGB_n_estimators=config.LGB_n_estimators
self.LGB_early_stopping_rounds=config.LGB_early_stopping_rounds
self.XGB_n_estimators=config.XGB_n_estimators
self.XGB_max_depth = config.XGB_max_depth
self.XGB_learning_rate = config.XGB_learning_rate
self.RF_n_estimators=config.RF_n_estimators
self.RF_random_state=config.RF_random_state
self.RF_n_jobs=config.RF_n_jobs
self.NN_hidden_neuron=config.NN_hidden_neuron
self.NN_optimizer=config.NN_optimizer
self.NN_lr= config.NN_lr
self.NN_model_save_location=config.NN_model_save_location
self.NN_max_epoch=config.NN_max_epoch
self.NN_add_PINN=config.NN_add_PINN
self.NN_epi=config.NN_epi
self.device=config.device
self.plot_row_num=config.plot_row_num
self.plot_col_num=config.plot_col_num
self.plot_importance_num=config.plot_importance_num
def load_model(self):
model_LGB = lgb.LGBMRegressor(objective='regression', max_depth=self.LGB_max_depth,
num_leaves=self.LGB_num_leaves,
learning_rate=self.LGB_learning_rate, n_estimators=self.LGB_n_estimators)
model_XGB = XGBRegressor(seed=self.seed,
n_estimators=self.XGB_n_estimators,
max_depth=self.XGB_max_depth,
eval_metric='rmse',
learning_rate=self.XGB_learning_rate,
min_child_weight=1,
subsample=1,
colsample_bytree=1,
colsample_bylevel=1,
gamma=0)
model_RF = RandomForestRegressor(n_estimators=self.RF_n_estimators,
criterion='mse',
random_state=self.RF_random_state,
n_jobs=self.RF_n_jobs)
Net = ANN(self.X_test.shape[1], self.NN_hidden_neuron, 1, config=self.config).to(self.device)
#model_LGB = joblib.load('model_LGB.pkl')
#wget.download('https://huggingface.co/woshixuhao/Rf_prediction/resolve/main/model_LGB.pkl')
#wget.download('https://huggingface.co/woshixuhao/Rf_prediction/resolve/main/model_XGB.pkl')
#wget.download('https://huggingface.co/woshixuhao/Rf_prediction/resolve/main/model_RF.pkl')
#wget.download('https://huggingface.co/woshixuhao/Rf_prediction/resolve/main/model_ANN.pkl')
model_LGB = joblib.load('model_LGB.pkl')
model_XGB = joblib.load('model_XGB.pkl')
model_RF = joblib.load('model_RF.pkl')
Net.load_state_dict(torch.load('model_ANN.pkl',map_location=torch.device('cpu')))
return model_LGB,model_XGB,model_RF,Net
def get_Rf(self):
model_LGB, model_XGB, model_RF, model_ANN = Model_ML.load_model(self)
X_test_ANN = Variable(torch.from_numpy(self.X_test.astype(np.float32)).to(self.device), requires_grad=True)
y_pred_ANN = model_ANN(X_test_ANN).cpu().data.numpy()
y_pred_ANN = y_pred_ANN.reshape(y_pred_ANN.shape[0], )
y_pred_XGB = model_XGB.predict(self.X_test)
if self.use_sigmoid == True:
y_pred_XGB = 1 / (1 + np.exp(-y_pred_XGB))
y_pred_LGB = model_LGB.predict(self.X_test)
if self.use_sigmoid == True:
y_pred_LGB = 1 / (1 + np.exp(-y_pred_LGB))
y_pred_RF = model_RF.predict(self.X_test)
if self.use_sigmoid == True:
y_pred_RF = 1 / (1 + np.exp(-y_pred_RF))
y_pred = (0.2 * y_pred_LGB + 0.2 * y_pred_XGB + 0.2 * y_pred_RF + 0.4 * y_pred_ANN)
return y_pred
def get_descriptor(smiles,ratio):
compound_mol = Chem.MolFromSmiles(smiles)
descriptor=[]
descriptor.append(Descriptors.ExactMolWt(compound_mol))
descriptor.append(Chem.rdMolDescriptors.CalcTPSA(compound_mol))
descriptor.append(Descriptors.NumRotatableBonds(compound_mol)) # Number of rotable bonds
descriptor.append(Descriptors.NumHDonors(compound_mol)) # Number of H bond donors
descriptor.append(Descriptors.NumHAcceptors(compound_mol)) # Number of H bond acceptors
descriptor.append(Descriptors.MolLogP(compound_mol)) # LogP
descriptor=np.array(descriptor)*ratio
return descriptor
def get_eluent_descriptor(eluent):
eluent=np.array(eluent)
des = np.zeros([6,])
for i in range(eluent.shape[0]):
if eluent[i] != 0:
e_descriptors = get_descriptor(Eluent_smiles[i], eluent[i])
des+=e_descriptors
return des
def get_data_from_smile(smile, eluent_list):
compound_mol = Chem.MolFromSmiles(smile)
Finger = MACCSkeys.GenMACCSKeys(Chem.MolFromSmiles(smile))
fingerprint = np.array([x for x in Finger])
compound_finger = fingerprint
compound_MolWt = Descriptors.ExactMolWt(compound_mol)
compound_TPSA = Chem.rdMolDescriptors.CalcTPSA(compound_mol)
compound_nRotB = Descriptors.NumRotatableBonds(compound_mol) # Number of rotable bonds
compound_HBD = Descriptors.NumHDonors(compound_mol) # Number of H bond donors
compound_HBA = Descriptors.NumHAcceptors(compound_mol) # Number of H bond acceptors
compound_LogP = Descriptors.MolLogP(compound_mol) # LogP
X_test = np.zeros([1, 179])
X_test[0, 0:167] = compound_finger
X_test[0, 167:173] = 0
X_test[0, 173:179] = [compound_MolWt, compound_TPSA, compound_nRotB, compound_HBD, compound_HBA, compound_LogP]
eluent_array = get_eluent_descriptor(eluent_list)
eluent_array = np.array(eluent_array)
X_test[0, 167:173] = eluent_array
return X_test
def get_data_from_xlsx(file_name):
file_open = pd.read_csv(file_name)
smiles = file_open['SMILES'].values
PEs = file_open['PE'].values
EAs = file_open['EA'].values
DCMs = file_open['DCM'].values
MeOHs = file_open['MeOH'].values
Et2Os = file_open['Et2O'].values
X_test = np.zeros([len(smiles), 179])
for i in range(len(smiles)):
smile=smiles[i]
eluent_sum = PEs[i] + EAs[i] + DCMs[i] + MeOHs[i] + Et2Os[i]
if eluent_sum != 0:
eluent_list = [PEs[i] / eluent_sum, EAs[i] / eluent_sum, DCMs[i] / eluent_sum, MeOHs[i] / eluent_sum, Et2Os[i] / eluent_sum]
else:
eluent_list = [0, 0, 0, 0, 0]
compound_mol = Chem.MolFromSmiles(smile)
Finger = MACCSkeys.GenMACCSKeys(Chem.MolFromSmiles(smile))
fingerprint = np.array([x for x in Finger])
compound_finger = fingerprint
compound_MolWt = Descriptors.ExactMolWt(compound_mol)
compound_TPSA = Chem.rdMolDescriptors.CalcTPSA(compound_mol)
compound_nRotB = Descriptors.NumRotatableBonds(compound_mol) # Number of rotable bonds
compound_HBD = Descriptors.NumHDonors(compound_mol) # Number of H bond donors
compound_HBA = Descriptors.NumHAcceptors(compound_mol) # Number of H bond acceptors
compound_LogP = Descriptors.MolLogP(compound_mol) # LogP
X_test[i, 0:167] = compound_finger
X_test[i, 167:173] = 0
X_test[i, 173:179] = [compound_MolWt, compound_TPSA, compound_nRotB, compound_HBD, compound_HBA, compound_LogP]
eluent_array = get_eluent_descriptor(eluent_list)
eluent_array = np.array(eluent_array)
X_test[i, 167:173] = eluent_array
return X_test
def predict_single(smile,PE,EA,DCM,MeOH,Et20):
if PE==None:
PE=0
if EA==None:
EA=0
if DCM==None:
DCM=0
if MeOH==None:
MeOH=0
if Et20==None:
Et20=0
config = parse_args()
config.add_dipole = False
eluent_sum=PE+EA+DCM+MeOH+Et20
if eluent_sum!=0:
eluent_list=[PE/eluent_sum,EA/eluent_sum,DCM/eluent_sum,MeOH/eluent_sum,Et20/eluent_sum]
else:
eluent_list=[0,0,0,0,0]
X_test=get_data_from_smile(smile,eluent_list)
Model = Model_ML(config,X_test)
Rf=Model.get_Rf()
return Rf[0]
def predict_xlsx(file):
file_name=file.name
config = parse_args()
config.add_dipole = False
X_test = get_data_from_xlsx(file_name)
Model = Model_ML(config, X_test)
Rf = Model.get_Rf()
file_open = pd.read_csv(file_name)
file_open['Rf']=Rf
file_open.to_csv(file_name)
return file_name
def get_data_from_smile_compare(smile):
x_PE = np.array([[0, 1, 0, 0, 0], [0.333333, 0.666667, 0, 0, 0], [0.5, 0.5, 0, 0, 0],
[0.75, 0.25, 0, 0, 0], [0.833333, 0.166667, 0, 0, 0], [0.952381, 0.047619, 0, 0, 0],
[0.980392, 0.019608, 0, 0, 0], [1, 0, 0, 0, 0]], dtype=np.float32)
x_PE=np.flip(x_PE,axis=0)
x_ME = np.array([[0, 0, 1, 0, 0], [0, 0, 0.990099, 0.009901, 0], [0, 0, 0.980392, 0.019608, 0],
[0, 0, 0.967742, 0.032258, 0], [0, 0, 0.952381, 0.047619, 0],
[0, 0, 0.909091, 0.090909, 0]], dtype=np.float32)
x_Et = np.array([[1,0,0,0,0],[0.66667, 0, 0, 0, 0.33333], [0.5, 0, 0, 0, 0.5],[0.33333,0,0,0,0.66667], [0, 0, 0, 0, 1]])
compound_mol = Chem.MolFromSmiles(smile)
Finger = MACCSkeys.GenMACCSKeys(Chem.MolFromSmiles(smile))
fingerprint = np.array([x for x in Finger])
compound_finger = fingerprint
compound_MolWt = Descriptors.ExactMolWt(compound_mol)
compound_TPSA = Chem.rdMolDescriptors.CalcTPSA(compound_mol)
compound_nRotB = Descriptors.NumRotatableBonds(compound_mol) # Number of rotable bonds
compound_HBD = Descriptors.NumHDonors(compound_mol) # Number of H bond donors
compound_HBA = Descriptors.NumHAcceptors(compound_mol) # Number of H bond acceptors
compound_LogP = Descriptors.MolLogP(compound_mol) # LogP
X_test_PE=[]
X_test_ME=[]
X_test_Et=[]
X_test = np.zeros([1, 179])
X_test[0, 0:167] = compound_finger
X_test[0, 167:173] = 0
X_test[0, 173:179] = [compound_MolWt, compound_TPSA, compound_nRotB, compound_HBD, compound_HBA, compound_LogP]
for x in x_PE:
X_test[0, 167:173] =get_eluent_descriptor(x)
X_test_PE.append(X_test.copy())
for x in x_ME:
X_test[0, 167:173] = get_eluent_descriptor(x)
X_test_ME.append(X_test.copy())
for x in x_Et:
X_test[0, 167:173] = get_eluent_descriptor(x)
X_test_Et.append(X_test.copy())
X_test_PE=np.squeeze(np.array(X_test_PE))
X_test_Et=np.squeeze(np.array(X_test_Et))
X_test_ME=np.squeeze(np.array(X_test_ME))
return X_test_PE,X_test_Et,X_test_ME
def convert_fig_PIL(fig):
canvas = FigureCanvasAgg(fig)
canvas.draw()
w, h = canvas.get_width_height()
buf = np.fromstring(canvas.tostring_argb(), dtype=np.uint8)
buf.shape = (w, h, 4)
buf = np.roll(buf, 3, axis=2)
image = Image.frombytes("RGBA", (w, h), buf.tostring())
return image
def predict_compare(smile_1,smile_2):
config = parse_args()
config.add_dipole = False
X_test_PE_1,X_test_Et_1,X_test_ME_1=get_data_from_smile_compare(smile_1)
X_test_PE_2,X_test_Et_2,X_test_ME_2=get_data_from_smile_compare(smile_2)
Rf_all=[]
for x_test in [X_test_PE_1,X_test_Et_1,X_test_ME_1,X_test_PE_2,X_test_Et_2,X_test_ME_2]:
Model = Model_ML(config,x_test)
Rf=Model.get_Rf()
Rf_all.append(Rf)
fig1=plot_Rf(Rf_all[0],Rf_all[3],'PE:EA')
fig2 = plot_Rf(Rf_all[2], Rf_all[5], 'DCM:MeOH')
fig3 = plot_Rf(Rf_all[1], Rf_all[4], 'PE:Et2O')
fig1=convert_fig_PIL(fig1)
fig2=convert_fig_PIL(fig2)
fig3=convert_fig_PIL(fig3)
return fig1,fig2,fig3
def plot_Rf(Rf_1,Rf_2,eluent):
EA = np.array([0, 0.019608, 0.047619, 0.166667, 0.25, 0.5, 0.666667, 1])
ME = np.array([0, 0.009901, 0.019608, 0.032258, 0.047619, 0.090909])
Et = np.array([0, 0.33333, 0.5, 0.66667, 1])
font1 = {'family': 'Arial',
'weight': 'normal',
'size': 5}
if eluent=='PE:EA':
fig = plt.figure(1, figsize=(2, 2), dpi=300)
plt.clf()
ax = plt.subplot(1, 1, 1)
plt.plot(np.arange(0,EA.shape[0],1), Rf_1, c='#82B0D2', label='SMILE_1', zorder=1)
plt.plot(np.arange(0,EA.shape[0],1), Rf_2, c='#8A83B4', label='SMILE_2', zorder=1)
plt.scatter(np.arange(0,EA.shape[0],1), Rf_1, color='white', edgecolors='black', marker='^', s=10, zorder=1,linewidths=0.5)
plt.scatter(np.arange(0,EA.shape[0],1), Rf_2, color='white', edgecolors='black', marker='*', s=10, zorder=2,linewidths=0.5)
plt.xlabel('PE:EA',font1)
plt.ylabel('Rf',font1)
plt.xticks(np.arange(0,EA.shape[0],1), ['1:0','50:1','20:1','5:1','3:1','1:1','1:2','0:1'],fontproperties='Arial', size=4)
plt.yticks([0,0.2,0.4,0.6,0.8,1.0],[0,0.2,0.4,0.6,0.8,1.0],fontproperties='Arial', size=4)
plt.legend(loc='lower right', prop=font1)
if eluent == 'DCM:MeOH':
fig = plt.figure(2, figsize=(2, 2), dpi=300)
plt.clf()
ax = plt.subplot(1, 1, 1)
plt.plot(np.arange(0,ME.shape[0],1), Rf_1, c='#82B0D2', label='SMILE_1', zorder=1)
plt.plot(np.arange(0,ME.shape[0],1), Rf_2, c='#8A83B4', label='SMILE_2', zorder=1)
plt.scatter(np.arange(0,ME.shape[0],1), Rf_1, color='white', edgecolors='black', marker='^', s=10, zorder=1,linewidths=0.5)
plt.scatter(np.arange(0,ME.shape[0],1), Rf_2, color='white', edgecolors='black', marker='*', s=10, zorder=2,linewidths=0.5)
plt.xlabel('DCM:MeOH', font1)
plt.ylabel('Rf', font1)
plt.xticks(np.arange(0,ME.shape[0],1), ['1:0','100:1','50:1','30:1','20:1','10:1'], fontproperties='Arial', size=4)
plt.yticks([0, 0.2, 0.4, 0.6, 0.8, 1.0], [0, 0.2, 0.4, 0.6, 0.8, 1.0], fontproperties='Arial', size=4)
plt.legend(loc='lower right', prop=font1)
if eluent == 'PE:Et2O':
fig = plt.figure(3, figsize=(2, 2), dpi=300)
plt.clf()
ax = plt.subplot(1, 1, 1)
plt.plot(np.arange(0,Et.shape[0],1), Rf_1, c='#82B0D2', label='SMILE_1', zorder=1)
plt.plot(np.arange(0,Et.shape[0],1), Rf_2, c='#8A83B4', label='SMILE_2', zorder=1)
plt.scatter(np.arange(0,Et.shape[0],1), Rf_1, color='white', edgecolors='black', marker='^', s=10, zorder=1,linewidths=0.5)
plt.scatter(np.arange(0,Et.shape[0],1), Rf_2, color='white', edgecolors='black', marker='*', s=10, zorder=2,linewidths=0.5)
plt.xlabel('PE:Et2O', font1)
plt.ylabel('Rf', font1)
plt.xticks(np.arange(0,Et.shape[0],1), ['1:0','2:1','1:1','1:2','0:1'], fontproperties='Arial', size=4)
plt.yticks([0, 0.2, 0.4, 0.6, 0.8, 1.0], [0, 0.2, 0.4, 0.6, 0.8, 1.0], fontproperties='Arial', size=4)
plt.legend(loc='lower right', prop=font1)
plt.title(eluent,font1)
plt.tight_layout()
plt.ylim(-0.1, 1.1)
return fig
if __name__=='__main__':
theme = gr.themes.Monochrome(
primary_hue="indigo",
secondary_hue="blue",
neutral_hue="slate",
)
model_card = f"""
## Description\n
It is a app for predicting Rf values of a compound under given eluents in TLC.\n
input: smiles of one compound, such as CC(OCC)=O, and the ratio of five solvents, example: 20 1 0 0 0 for PE:EA=20:1\n
output: the predicted Rf value.\n\n
## Citation\n
We would appreciate it if you use our software and give us credit in the acknowledgements section of your paper:\n
we use RF prediction software in our synthesis work. [Citation 1, Citation 2]\n
Citation1: H. Xu, J. Lin, Q. Liu, Y. Chen, J. Zhang, Y. Yang, M.C. Young, Y. Xu, D. Zhang, F. Mo
High-throughput discovery of chemical structure-polarity relationships combining automation and machine-learning techniques
Chem (2022), 3202–3214, 10.1016/j.chempr.2022.08.008\n
Citation2: https://huggingface.co/spaces/woshixuhao/Rf_prediction\n
Business applications require authorization!
## Function\n
Single predict: predict a compound under a given eluent system\n
Batch predict: Upload a .csv file with multiple conditions to conduct batch prediction\n
Rf compare: predict Rf values of two compounds under different eluents in TLC
"""
with gr.Blocks() as demo:
gr.Markdown('''
<div>
<h1 style='text-align: center'>Rf prediction</h1>
</div>
''')
gr.Markdown(model_card)
with gr.Tab("Single prediction"):
gr.Interface(fn=predict_single, inputs=["text", "number","number","number","number","number"], outputs='number')
with gr.Tab("Batch prediction"):
gr.Interface(fn=predict_xlsx,description='please upload a .csv file formatted in the form of the example', inputs="file", outputs="file",examples=[os.path.join(os.path.dirname(__file__),"TLC_1.csv")],cache_examples=True)
with gr.Tab("Rf compare"):
gr.Interface(fn=predict_compare, inputs=["text", "text"], outputs=["image","image","image"],
description='input: smiles of two compounds, such as CC(OCC)=O and CCOCC\n output: three images that show the Rf curve with different eluent ratios under PE/EA, DCM/MeOH, PE/Et2O system.\n\n')
demo.launch()
# smile='O=C(OC1C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C(COC(C)=O)O1)C'
# eluent=[0,0.9,0,0,0]
# print(predict_single(smile,1,0,0,0,0))
|