Rf_prediction / app.py
woshixuhao's picture
Update app.py
b90acdd
raw
history blame
24.8 kB
import argparse
import os
from rdkit import Chem
import sys
import joblib
sys.modules['sklearn.externals.joblib'] = joblib
from sklearn.externals import joblib
import numpy as np
from rdkit.Chem import Descriptors
from rdkit.Chem import rdMolDescriptors
from xgboost.sklearn import XGBClassifier,XGBRegressor
import torch
import torch.nn.functional as F
from torch.autograd import Variable
from rdkit.Chem import MACCSkeys
import torch.nn as nn
import lightgbm as lgb
from sklearn.ensemble import RandomForestRegressor
import wget
import warnings
import gradio as gr
import pandas as pd
from matplotlib.backends.backend_agg import FigureCanvasAgg
import PIL.Image as Image
import matplotlib.pyplot as plt
import pandas as pd
import time
warnings.filterwarnings("ignore")
Eluent_smiles=['CCCCCC','CC(OCC)=O','C(Cl)Cl','CO','CCOCC']
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--file_path', type=str, default=os.getcwd()+'\TLC_dataset.xlsx', help='path of download dataset')
parser.add_argument('--dipole_path', type=str, default=os.getcwd() + '\compound_list_带化合物分类.xlsx',
help='path of dipole file')
parser.add_argument('--data_range', type=int, default=4944, help='utilized data range,robot:4114,manual:4458,new:4944')
parser.add_argument('--automatic_divide', type=bool, default=False, help='automatically divide dataset by 80% train,10% validate and 10% test')
parser.add_argument('--choose_total', type=int, default=387, help='train total num,robot:387,manual:530')
parser.add_argument('--choose_train', type=int, default=308, help='train num,robot:387,manual:530')
parser.add_argument('--choose_validate', type=int, default=38, help='validate num')
parser.add_argument('--choose_test', type=int, default=38, help='test num')
parser.add_argument('--seed', type=int, default=324, help='random seed for split dataset')
parser.add_argument('--torch_seed', type=int, default=324, help='random seed for torch')
parser.add_argument('--add_dipole', type=bool, default=True, help='add dipole into dataset')
parser.add_argument('--add_molecular_descriptors', type=bool, default=True, help='add molecular_descriptors (分子量(MW)、拓扑极性表面积(TPSA)、可旋转键的个数(NROTB)、氢键供体个数(HBA)、氢键受体个数(HBD)、脂水分配系数值(LogP)) into dataset')
parser.add_argument('--add_MACCkeys', type=bool, default=True,help='add MACCSkeys into dataset')
parser.add_argument('--add_eluent_matrix', type=bool, default=True,help='add eluent matrix into dataset')
parser.add_argument('--test_mode', type=str, default='robot', help='manual data or robot data or fix, costum test data')
parser.add_argument('--use_model', type=str, default='Ensemble',help='the utilized model (XGB,LGB,ANN,RF,Ensemble,Bayesian)')
parser.add_argument('--download_data', type=bool, default=False, help='use local dataset or download from dataset')
parser.add_argument('--use_sigmoid', type=bool, default=True, help='use sigmoid')
parser.add_argument('--shuffle_array', type=bool, default=True, help='shuffle_array')
parser.add_argument('--characterization_mode', type=str, default='standard',
help='the characterization mode for the dataset, including standard, precise_TPSA, no_multi')
#---------------parapmeters for plot---------------------
parser.add_argument('--plot_col_num', type=int, default=4, help='The col_num in plot')
parser.add_argument('--plot_row_num', type=int, default=4, help='The row_num in plot')
parser.add_argument('--plot_importance_num', type=int, default=10, help='The max importance num in plot')
#--------------parameters For LGB-------------------
parser.add_argument('--LGB_max_depth', type=int, default=5, help='max_depth for LGB')
parser.add_argument('--LGB_num_leaves', type=int, default=25, help='num_leaves for LGB')
parser.add_argument('--LGB_learning_rate', type=float, default=0.007, help='learning_rate for LGB')
parser.add_argument('--LGB_n_estimators', type=int, default=1000, help='n_estimators for LGB')
parser.add_argument('--LGB_early_stopping_rounds', type=int, default=200, help='early_stopping_rounds for LGB')
#---------------parameters for XGB-----------------------
parser.add_argument('--XGB_n_estimators', type=int, default=200, help='n_estimators for XGB')
parser.add_argument('--XGB_max_depth', type=int, default=3, help='max_depth for XGB')
parser.add_argument('--XGB_learning_rate', type=float, default=0.1, help='learning_rate for XGB')
#---------------parameters for RF------------------------
parser.add_argument('--RF_n_estimators', type=int, default=1000, help='n_estimators for RF')
parser.add_argument('--RF_random_state', type=int, default=1, help='random_state for RF')
parser.add_argument('--RF_n_jobs', type=int, default=1, help='n_jobs for RF')
#--------------parameters for ANN-----------------------
parser.add_argument('--NN_hidden_neuron', type=int, default=128, help='hidden neurons for NN')
parser.add_argument('--NN_optimizer', type=str, default='Adam', help='optimizer for NN (Adam,SGD,RMSprop)')
parser.add_argument('--NN_lr', type=float, default=0.005, help='learning rate for NN')
parser.add_argument('--NN_model_save_location', type=str, default=os.getcwd()+'\model_save_NN', help='learning rate for NN')
parser.add_argument('--NN_max_epoch', type=int, default=5000, help='max training epoch for NN')
parser.add_argument('--NN_add_sigmoid', type=bool, default=True, help='whether add sigmoid in NN')
parser.add_argument('--NN_add_PINN', type=bool, default=False, help='whether add PINN in NN')
parser.add_argument('--NN_epi', type=float, default=100.0, help='The coef of PINN Loss in NN')
config = parser.parse_args()
config.device = 'cpu'
return config
class ANN(nn.Module):
'''
Construct artificial neural network
'''
def __init__(self, in_neuron, hidden_neuron, out_neuron,config):
super(ANN, self).__init__()
self.input_layer = nn.Linear(in_neuron, hidden_neuron)
self.hidden_layer = nn.Linear(hidden_neuron, hidden_neuron)
self.output_layer = nn.Linear(hidden_neuron, out_neuron)
self.NN_add_sigmoid=config.NN_add_sigmoid
def forward(self, x):
x = self.input_layer(x)
x = F.leaky_relu(x)
x = self.hidden_layer(x)
x = F.leaky_relu(x)
x = self.hidden_layer(x)
x = F.leaky_relu(x)
x = self.hidden_layer(x)
x = F.leaky_relu(x)
x = self.output_layer(x)
if self.NN_add_sigmoid==True:
x = F.sigmoid(x)
return x
class Model_ML():
def __init__(self,config,X_test):
super(Model_ML, self).__init__()
self.X_test=X_test
self.seed=config.seed
self.torch_seed=config.seed
self.config=config
self.add_dipole = config.add_dipole
self.add_molecular_descriptors = config.add_molecular_descriptors
self.add_eluent_matrix=config.add_eluent_matrix
self.use_sigmoid=config.use_sigmoid
self.use_model=config.use_model
self.LGB_max_depth=config.LGB_max_depth
self.LGB_num_leaves=config.LGB_num_leaves
self.LGB_learning_rate=config.LGB_learning_rate
self.LGB_n_estimators=config.LGB_n_estimators
self.LGB_early_stopping_rounds=config.LGB_early_stopping_rounds
self.XGB_n_estimators=config.XGB_n_estimators
self.XGB_max_depth = config.XGB_max_depth
self.XGB_learning_rate = config.XGB_learning_rate
self.RF_n_estimators=config.RF_n_estimators
self.RF_random_state=config.RF_random_state
self.RF_n_jobs=config.RF_n_jobs
self.NN_hidden_neuron=config.NN_hidden_neuron
self.NN_optimizer=config.NN_optimizer
self.NN_lr= config.NN_lr
self.NN_model_save_location=config.NN_model_save_location
self.NN_max_epoch=config.NN_max_epoch
self.NN_add_PINN=config.NN_add_PINN
self.NN_epi=config.NN_epi
self.device=config.device
self.plot_row_num=config.plot_row_num
self.plot_col_num=config.plot_col_num
self.plot_importance_num=config.plot_importance_num
def load_model(self):
model_LGB = lgb.LGBMRegressor(objective='regression', max_depth=self.LGB_max_depth,
num_leaves=self.LGB_num_leaves,
learning_rate=self.LGB_learning_rate, n_estimators=self.LGB_n_estimators)
model_XGB = XGBRegressor(seed=self.seed,
n_estimators=self.XGB_n_estimators,
max_depth=self.XGB_max_depth,
eval_metric='rmse',
learning_rate=self.XGB_learning_rate,
min_child_weight=1,
subsample=1,
colsample_bytree=1,
colsample_bylevel=1,
gamma=0)
model_RF = RandomForestRegressor(n_estimators=self.RF_n_estimators,
criterion='mse',
random_state=self.RF_random_state,
n_jobs=self.RF_n_jobs)
Net = ANN(self.X_test.shape[1], self.NN_hidden_neuron, 1, config=self.config).to(self.device)
#model_LGB = joblib.load('model_LGB.pkl')
#wget.download('https://huggingface.co/woshixuhao/Rf_prediction/resolve/main/model_LGB.pkl')
#wget.download('https://huggingface.co/woshixuhao/Rf_prediction/resolve/main/model_XGB.pkl')
#wget.download('https://huggingface.co/woshixuhao/Rf_prediction/resolve/main/model_RF.pkl')
#wget.download('https://huggingface.co/woshixuhao/Rf_prediction/resolve/main/model_ANN.pkl')
model_LGB = joblib.load('model_LGB.pkl')
model_XGB = joblib.load('model_XGB.pkl')
model_RF = joblib.load('model_RF.pkl')
Net.load_state_dict(torch.load('model_ANN.pkl',map_location=torch.device('cpu')))
return model_LGB,model_XGB,model_RF,Net
def get_Rf(self):
model_LGB, model_XGB, model_RF, model_ANN = Model_ML.load_model(self)
X_test_ANN = Variable(torch.from_numpy(self.X_test.astype(np.float32)).to(self.device), requires_grad=True)
y_pred_ANN = model_ANN(X_test_ANN).cpu().data.numpy()
y_pred_ANN = y_pred_ANN.reshape(y_pred_ANN.shape[0], )
y_pred_XGB = model_XGB.predict(self.X_test)
if self.use_sigmoid == True:
y_pred_XGB = 1 / (1 + np.exp(-y_pred_XGB))
y_pred_LGB = model_LGB.predict(self.X_test)
if self.use_sigmoid == True:
y_pred_LGB = 1 / (1 + np.exp(-y_pred_LGB))
y_pred_RF = model_RF.predict(self.X_test)
if self.use_sigmoid == True:
y_pred_RF = 1 / (1 + np.exp(-y_pred_RF))
y_pred = (0.2 * y_pred_LGB + 0.2 * y_pred_XGB + 0.2 * y_pred_RF + 0.4 * y_pred_ANN)
return y_pred
def get_descriptor(smiles,ratio):
compound_mol = Chem.MolFromSmiles(smiles)
descriptor=[]
descriptor.append(Descriptors.ExactMolWt(compound_mol))
descriptor.append(Chem.rdMolDescriptors.CalcTPSA(compound_mol))
descriptor.append(Descriptors.NumRotatableBonds(compound_mol)) # Number of rotable bonds
descriptor.append(Descriptors.NumHDonors(compound_mol)) # Number of H bond donors
descriptor.append(Descriptors.NumHAcceptors(compound_mol)) # Number of H bond acceptors
descriptor.append(Descriptors.MolLogP(compound_mol)) # LogP
descriptor=np.array(descriptor)*ratio
return descriptor
def get_eluent_descriptor(eluent):
eluent=np.array(eluent)
des = np.zeros([6,])
for i in range(eluent.shape[0]):
if eluent[i] != 0:
e_descriptors = get_descriptor(Eluent_smiles[i], eluent[i])
des+=e_descriptors
return des
def get_data_from_smile(smile, eluent_list):
compound_mol = Chem.MolFromSmiles(smile)
Finger = MACCSkeys.GenMACCSKeys(Chem.MolFromSmiles(smile))
fingerprint = np.array([x for x in Finger])
compound_finger = fingerprint
compound_MolWt = Descriptors.ExactMolWt(compound_mol)
compound_TPSA = Chem.rdMolDescriptors.CalcTPSA(compound_mol)
compound_nRotB = Descriptors.NumRotatableBonds(compound_mol) # Number of rotable bonds
compound_HBD = Descriptors.NumHDonors(compound_mol) # Number of H bond donors
compound_HBA = Descriptors.NumHAcceptors(compound_mol) # Number of H bond acceptors
compound_LogP = Descriptors.MolLogP(compound_mol) # LogP
X_test = np.zeros([1, 179])
X_test[0, 0:167] = compound_finger
X_test[0, 167:173] = 0
X_test[0, 173:179] = [compound_MolWt, compound_TPSA, compound_nRotB, compound_HBD, compound_HBA, compound_LogP]
eluent_array = get_eluent_descriptor(eluent_list)
eluent_array = np.array(eluent_array)
X_test[0, 167:173] = eluent_array
return X_test
def get_data_from_xlsx(file_name):
file_open = pd.read_csv(file_name)
smiles = file_open['SMILES'].values
PEs = file_open['PE'].values
EAs = file_open['EA'].values
DCMs = file_open['DCM'].values
MeOHs = file_open['MeOH'].values
Et2Os = file_open['Et2O'].values
X_test = np.zeros([len(smiles), 179])
for i in range(len(smiles)):
smile=smiles[i]
eluent_sum = PEs[i] + EAs[i] + DCMs[i] + MeOHs[i] + Et2Os[i]
if eluent_sum != 0:
eluent_list = [PEs[i] / eluent_sum, EAs[i] / eluent_sum, DCMs[i] / eluent_sum, MeOHs[i] / eluent_sum, Et2Os[i] / eluent_sum]
else:
eluent_list = [0, 0, 0, 0, 0]
compound_mol = Chem.MolFromSmiles(smile)
Finger = MACCSkeys.GenMACCSKeys(Chem.MolFromSmiles(smile))
fingerprint = np.array([x for x in Finger])
compound_finger = fingerprint
compound_MolWt = Descriptors.ExactMolWt(compound_mol)
compound_TPSA = Chem.rdMolDescriptors.CalcTPSA(compound_mol)
compound_nRotB = Descriptors.NumRotatableBonds(compound_mol) # Number of rotable bonds
compound_HBD = Descriptors.NumHDonors(compound_mol) # Number of H bond donors
compound_HBA = Descriptors.NumHAcceptors(compound_mol) # Number of H bond acceptors
compound_LogP = Descriptors.MolLogP(compound_mol) # LogP
X_test[i, 0:167] = compound_finger
X_test[i, 167:173] = 0
X_test[i, 173:179] = [compound_MolWt, compound_TPSA, compound_nRotB, compound_HBD, compound_HBA, compound_LogP]
eluent_array = get_eluent_descriptor(eluent_list)
eluent_array = np.array(eluent_array)
X_test[i, 167:173] = eluent_array
return X_test
def predict_single(smile,PE,EA,DCM,MeOH,Et20):
if PE==None:
PE=0
if EA==None:
EA=0
if DCM==None:
DCM=0
if MeOH==None:
MeOH=0
if Et20==None:
Et20=0
config = parse_args()
config.add_dipole = False
eluent_sum=PE+EA+DCM+MeOH+Et20
if eluent_sum!=0:
eluent_list=[PE/eluent_sum,EA/eluent_sum,DCM/eluent_sum,MeOH/eluent_sum,Et20/eluent_sum]
else:
eluent_list=[0,0,0,0,0]
X_test=get_data_from_smile(smile,eluent_list)
Model = Model_ML(config,X_test)
Rf=Model.get_Rf()
return Rf[0]
def predict_xlsx(file):
file_name=file.name
config = parse_args()
config.add_dipole = False
X_test = get_data_from_xlsx(file_name)
Model = Model_ML(config, X_test)
Rf = Model.get_Rf()
file_open = pd.read_csv(file_name)
file_open['Rf']=Rf
file_open.to_csv(file_name)
return file_name
def get_data_from_smile_compare(smile):
x_PE = np.array([[0, 1, 0, 0, 0], [0.333333, 0.666667, 0, 0, 0], [0.5, 0.5, 0, 0, 0],
[0.75, 0.25, 0, 0, 0], [0.833333, 0.166667, 0, 0, 0], [0.952381, 0.047619, 0, 0, 0],
[0.980392, 0.019608, 0, 0, 0], [1, 0, 0, 0, 0]], dtype=np.float32)
x_PE=np.flip(x_PE,axis=0)
x_ME = np.array([[0, 0, 1, 0, 0], [0, 0, 0.990099, 0.009901, 0], [0, 0, 0.980392, 0.019608, 0],
[0, 0, 0.967742, 0.032258, 0], [0, 0, 0.952381, 0.047619, 0],
[0, 0, 0.909091, 0.090909, 0]], dtype=np.float32)
x_Et = np.array([[1,0,0,0,0],[0.66667, 0, 0, 0, 0.33333], [0.5, 0, 0, 0, 0.5],[0.33333,0,0,0,0.66667], [0, 0, 0, 0, 1]])
compound_mol = Chem.MolFromSmiles(smile)
Finger = MACCSkeys.GenMACCSKeys(Chem.MolFromSmiles(smile))
fingerprint = np.array([x for x in Finger])
compound_finger = fingerprint
compound_MolWt = Descriptors.ExactMolWt(compound_mol)
compound_TPSA = Chem.rdMolDescriptors.CalcTPSA(compound_mol)
compound_nRotB = Descriptors.NumRotatableBonds(compound_mol) # Number of rotable bonds
compound_HBD = Descriptors.NumHDonors(compound_mol) # Number of H bond donors
compound_HBA = Descriptors.NumHAcceptors(compound_mol) # Number of H bond acceptors
compound_LogP = Descriptors.MolLogP(compound_mol) # LogP
X_test_PE=[]
X_test_ME=[]
X_test_Et=[]
X_test = np.zeros([1, 179])
X_test[0, 0:167] = compound_finger
X_test[0, 167:173] = 0
X_test[0, 173:179] = [compound_MolWt, compound_TPSA, compound_nRotB, compound_HBD, compound_HBA, compound_LogP]
for x in x_PE:
X_test[0, 167:173] =get_eluent_descriptor(x)
X_test_PE.append(X_test.copy())
for x in x_ME:
X_test[0, 167:173] = get_eluent_descriptor(x)
X_test_ME.append(X_test.copy())
for x in x_Et:
X_test[0, 167:173] = get_eluent_descriptor(x)
X_test_Et.append(X_test.copy())
X_test_PE=np.squeeze(np.array(X_test_PE))
X_test_Et=np.squeeze(np.array(X_test_Et))
X_test_ME=np.squeeze(np.array(X_test_ME))
return X_test_PE,X_test_Et,X_test_ME
def convert_fig_PIL(fig):
canvas = FigureCanvasAgg(fig)
canvas.draw()
w, h = canvas.get_width_height()
buf = np.fromstring(canvas.tostring_argb(), dtype=np.uint8)
buf.shape = (w, h, 4)
buf = np.roll(buf, 3, axis=2)
image = Image.frombytes("RGBA", (w, h), buf.tostring())
return image
def predict_compare(smile_1,smile_2):
config = parse_args()
config.add_dipole = False
X_test_PE_1,X_test_Et_1,X_test_ME_1=get_data_from_smile_compare(smile_1)
X_test_PE_2,X_test_Et_2,X_test_ME_2=get_data_from_smile_compare(smile_2)
Rf_all=[]
for x_test in [X_test_PE_1,X_test_Et_1,X_test_ME_1,X_test_PE_2,X_test_Et_2,X_test_ME_2]:
Model = Model_ML(config,x_test)
Rf=Model.get_Rf()
Rf_all.append(Rf)
fig1=plot_Rf(Rf_all[0],Rf_all[3],'PE:EA')
fig2 = plot_Rf(Rf_all[2], Rf_all[5], 'DCM:MeOH')
fig3 = plot_Rf(Rf_all[1], Rf_all[4], 'PE:Et2O')
fig1=convert_fig_PIL(fig1)
fig2=convert_fig_PIL(fig2)
fig3=convert_fig_PIL(fig3)
return fig1,fig2,fig3
def plot_Rf(Rf_1,Rf_2,eluent):
EA = np.array([0, 0.019608, 0.047619, 0.166667, 0.25, 0.5, 0.666667, 1])
ME = np.array([0, 0.009901, 0.019608, 0.032258, 0.047619, 0.090909])
Et = np.array([0, 0.33333, 0.5, 0.66667, 1])
font1 = {'family': 'Arial',
'weight': 'normal',
'size': 5}
if eluent=='PE:EA':
fig = plt.figure(1, figsize=(2, 2), dpi=300)
plt.clf()
ax = plt.subplot(1, 1, 1)
plt.plot(np.arange(0,EA.shape[0],1), Rf_1, c='#82B0D2', label='SMILE_1', zorder=1)
plt.plot(np.arange(0,EA.shape[0],1), Rf_2, c='#8A83B4', label='SMILE_2', zorder=1)
plt.scatter(np.arange(0,EA.shape[0],1), Rf_1, color='white', edgecolors='black', marker='^', s=10, zorder=1,linewidths=0.5)
plt.scatter(np.arange(0,EA.shape[0],1), Rf_2, color='white', edgecolors='black', marker='*', s=10, zorder=2,linewidths=0.5)
plt.xlabel('PE:EA',font1)
plt.ylabel('Rf',font1)
plt.xticks(np.arange(0,EA.shape[0],1), ['1:0','50:1','20:1','5:1','3:1','1:1','1:2','0:1'],fontproperties='Arial', size=4)
plt.yticks([0,0.2,0.4,0.6,0.8,1.0],[0,0.2,0.4,0.6,0.8,1.0],fontproperties='Arial', size=4)
plt.legend(loc='lower right', prop=font1)
if eluent == 'DCM:MeOH':
fig = plt.figure(2, figsize=(2, 2), dpi=300)
plt.clf()
ax = plt.subplot(1, 1, 1)
plt.plot(np.arange(0,ME.shape[0],1), Rf_1, c='#82B0D2', label='SMILE_1', zorder=1)
plt.plot(np.arange(0,ME.shape[0],1), Rf_2, c='#8A83B4', label='SMILE_2', zorder=1)
plt.scatter(np.arange(0,ME.shape[0],1), Rf_1, color='white', edgecolors='black', marker='^', s=10, zorder=1,linewidths=0.5)
plt.scatter(np.arange(0,ME.shape[0],1), Rf_2, color='white', edgecolors='black', marker='*', s=10, zorder=2,linewidths=0.5)
plt.xlabel('DCM:MeOH', font1)
plt.ylabel('Rf', font1)
plt.xticks(np.arange(0,ME.shape[0],1), ['1:0','100:1','50:1','30:1','20:1','10:1'], fontproperties='Arial', size=4)
plt.yticks([0, 0.2, 0.4, 0.6, 0.8, 1.0], [0, 0.2, 0.4, 0.6, 0.8, 1.0], fontproperties='Arial', size=4)
plt.legend(loc='lower right', prop=font1)
if eluent == 'PE:Et2O':
fig = plt.figure(3, figsize=(2, 2), dpi=300)
plt.clf()
ax = plt.subplot(1, 1, 1)
plt.plot(np.arange(0,Et.shape[0],1), Rf_1, c='#82B0D2', label='SMILE_1', zorder=1)
plt.plot(np.arange(0,Et.shape[0],1), Rf_2, c='#8A83B4', label='SMILE_2', zorder=1)
plt.scatter(np.arange(0,Et.shape[0],1), Rf_1, color='white', edgecolors='black', marker='^', s=10, zorder=1,linewidths=0.5)
plt.scatter(np.arange(0,Et.shape[0],1), Rf_2, color='white', edgecolors='black', marker='*', s=10, zorder=2,linewidths=0.5)
plt.xlabel('PE:Et2O', font1)
plt.ylabel('Rf', font1)
plt.xticks(np.arange(0,Et.shape[0],1), ['1:0','2:1','1:1','1:2','0:1'], fontproperties='Arial', size=4)
plt.yticks([0, 0.2, 0.4, 0.6, 0.8, 1.0], [0, 0.2, 0.4, 0.6, 0.8, 1.0], fontproperties='Arial', size=4)
plt.legend(loc='lower right', prop=font1)
plt.title(eluent,font1)
plt.tight_layout()
plt.ylim(-0.1, 1.1)
return fig
if __name__=='__main__':
theme = gr.themes.Monochrome(
primary_hue="indigo",
secondary_hue="blue",
neutral_hue="slate",
)
model_card = f"""
## Description\n
It is a app for predicting Rf values of a compound under given eluents in TLC.\n
input: smiles of one compound, such as CC(OCC)=O, and the ratio of five solvents, example: 20 1 0 0 0 for PE:EA=20:1\n
output: the predicted Rf value.\n\n
## Citation\n
We would appreciate it if you use our software and give us credit in the acknowledgements section of your paper:\n
we use RF prediction software in our synthesis work. [Citation 1, Citation 2]\n
Citation1: H. Xu, J. Lin, Q. Liu, Y. Chen, J. Zhang, Y. Yang, M.C. Young, Y. Xu, D. Zhang, F. Mo
High-throughput discovery of chemical structure-polarity relationships combining automation and machine-learning techniques
Chem (2022), 3202–3214, 10.1016/j.chempr.2022.08.008\n
Citation2: https://huggingface.co/spaces/woshixuhao/Rf_prediction\n
Business applications require authorization!
## Function\n
Single predict: predict a compound under a given eluent system\n
Batch predict: Upload a .csv file with multiple conditions to conduct batch prediction\n
Rf compare: predict Rf values of two compounds under different eluents in TLC
"""
with gr.Blocks() as demo:
gr.Markdown('''
<div>
<h1 style='text-align: center'>Rf prediction</h1>
</div>
''')
gr.Markdown(model_card)
with gr.Tab("Single prediction"):
gr.Interface(fn=predict_single, inputs=["text", "number","number","number","number","number"], outputs='number')
with gr.Tab("Batch prediction"):
gr.Interface(fn=predict_xlsx,description='please upload a .csv file formatted in the form of the example', inputs="file", outputs="file",examples=[os.path.join(os.path.dirname(__file__),"TLC_1.csv")],cache_examples=True)
with gr.Tab("Rf compare"):
gr.Interface(fn=predict_compare, inputs=["text", "text"], outputs=["image","image","image"],
description='input: smiles of two compounds, such as CC(OCC)=O and CCOCC\n output: three images that show the Rf curve with different eluent ratios under PE/EA, DCM/MeOH, PE/Et2O system.\n\n')
demo.launch()
# smile='O=C(OC1C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C(COC(C)=O)O1)C'
# eluent=[0,0.9,0,0,0]
# print(predict_single(smile,1,0,0,0,0))