Spaces:
Sleeping
Sleeping
import argparse | |
import os | |
from rdkit import Chem | |
import sys | |
import joblib | |
sys.modules['sklearn.externals.joblib'] = joblib | |
from sklearn.externals import joblib | |
import numpy as np | |
from rdkit.Chem import Descriptors | |
from rdkit.Chem import rdMolDescriptors | |
from xgboost.sklearn import XGBClassifier,XGBRegressor | |
import torch | |
import torch.nn.functional as F | |
from torch.autograd import Variable | |
from rdkit.Chem import MACCSkeys | |
import torch.nn as nn | |
import lightgbm as lgb | |
from sklearn.ensemble import RandomForestRegressor | |
import wget | |
import warnings | |
import gradio as gr | |
import pandas as pd | |
from matplotlib.backends.backend_agg import FigureCanvasAgg | |
import PIL.Image as Image | |
import matplotlib.pyplot as plt | |
import pandas as pd | |
import time | |
warnings.filterwarnings("ignore") | |
Eluent_smiles=['CCCCCC','CC(OCC)=O','C(Cl)Cl','CO','CCOCC'] | |
def parse_args(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--file_path', type=str, default=os.getcwd()+'\TLC_dataset.xlsx', help='path of download dataset') | |
parser.add_argument('--dipole_path', type=str, default=os.getcwd() + '\compound_list_带化合物分类.xlsx', | |
help='path of dipole file') | |
parser.add_argument('--data_range', type=int, default=4944, help='utilized data range,robot:4114,manual:4458,new:4944') | |
parser.add_argument('--automatic_divide', type=bool, default=False, help='automatically divide dataset by 80% train,10% validate and 10% test') | |
parser.add_argument('--choose_total', type=int, default=387, help='train total num,robot:387,manual:530') | |
parser.add_argument('--choose_train', type=int, default=308, help='train num,robot:387,manual:530') | |
parser.add_argument('--choose_validate', type=int, default=38, help='validate num') | |
parser.add_argument('--choose_test', type=int, default=38, help='test num') | |
parser.add_argument('--seed', type=int, default=324, help='random seed for split dataset') | |
parser.add_argument('--torch_seed', type=int, default=324, help='random seed for torch') | |
parser.add_argument('--add_dipole', type=bool, default=True, help='add dipole into dataset') | |
parser.add_argument('--add_molecular_descriptors', type=bool, default=True, help='add molecular_descriptors (分子量(MW)、拓扑极性表面积(TPSA)、可旋转键的个数(NROTB)、氢键供体个数(HBA)、氢键受体个数(HBD)、脂水分配系数值(LogP)) into dataset') | |
parser.add_argument('--add_MACCkeys', type=bool, default=True,help='add MACCSkeys into dataset') | |
parser.add_argument('--add_eluent_matrix', type=bool, default=True,help='add eluent matrix into dataset') | |
parser.add_argument('--test_mode', type=str, default='robot', help='manual data or robot data or fix, costum test data') | |
parser.add_argument('--use_model', type=str, default='Ensemble',help='the utilized model (XGB,LGB,ANN,RF,Ensemble,Bayesian)') | |
parser.add_argument('--download_data', type=bool, default=False, help='use local dataset or download from dataset') | |
parser.add_argument('--use_sigmoid', type=bool, default=True, help='use sigmoid') | |
parser.add_argument('--shuffle_array', type=bool, default=True, help='shuffle_array') | |
parser.add_argument('--characterization_mode', type=str, default='standard', | |
help='the characterization mode for the dataset, including standard, precise_TPSA, no_multi') | |
#---------------parapmeters for plot--------------------- | |
parser.add_argument('--plot_col_num', type=int, default=4, help='The col_num in plot') | |
parser.add_argument('--plot_row_num', type=int, default=4, help='The row_num in plot') | |
parser.add_argument('--plot_importance_num', type=int, default=10, help='The max importance num in plot') | |
#--------------parameters For LGB------------------- | |
parser.add_argument('--LGB_max_depth', type=int, default=5, help='max_depth for LGB') | |
parser.add_argument('--LGB_num_leaves', type=int, default=25, help='num_leaves for LGB') | |
parser.add_argument('--LGB_learning_rate', type=float, default=0.007, help='learning_rate for LGB') | |
parser.add_argument('--LGB_n_estimators', type=int, default=1000, help='n_estimators for LGB') | |
parser.add_argument('--LGB_early_stopping_rounds', type=int, default=200, help='early_stopping_rounds for LGB') | |
#---------------parameters for XGB----------------------- | |
parser.add_argument('--XGB_n_estimators', type=int, default=200, help='n_estimators for XGB') | |
parser.add_argument('--XGB_max_depth', type=int, default=3, help='max_depth for XGB') | |
parser.add_argument('--XGB_learning_rate', type=float, default=0.1, help='learning_rate for XGB') | |
#---------------parameters for RF------------------------ | |
parser.add_argument('--RF_n_estimators', type=int, default=1000, help='n_estimators for RF') | |
parser.add_argument('--RF_random_state', type=int, default=1, help='random_state for RF') | |
parser.add_argument('--RF_n_jobs', type=int, default=1, help='n_jobs for RF') | |
#--------------parameters for ANN----------------------- | |
parser.add_argument('--NN_hidden_neuron', type=int, default=128, help='hidden neurons for NN') | |
parser.add_argument('--NN_optimizer', type=str, default='Adam', help='optimizer for NN (Adam,SGD,RMSprop)') | |
parser.add_argument('--NN_lr', type=float, default=0.005, help='learning rate for NN') | |
parser.add_argument('--NN_model_save_location', type=str, default=os.getcwd()+'\model_save_NN', help='learning rate for NN') | |
parser.add_argument('--NN_max_epoch', type=int, default=5000, help='max training epoch for NN') | |
parser.add_argument('--NN_add_sigmoid', type=bool, default=True, help='whether add sigmoid in NN') | |
parser.add_argument('--NN_add_PINN', type=bool, default=False, help='whether add PINN in NN') | |
parser.add_argument('--NN_epi', type=float, default=100.0, help='The coef of PINN Loss in NN') | |
config = parser.parse_args() | |
config.device = 'cpu' | |
return config | |
class ANN(nn.Module): | |
''' | |
Construct artificial neural network | |
''' | |
def __init__(self, in_neuron, hidden_neuron, out_neuron,config): | |
super(ANN, self).__init__() | |
self.input_layer = nn.Linear(in_neuron, hidden_neuron) | |
self.hidden_layer = nn.Linear(hidden_neuron, hidden_neuron) | |
self.output_layer = nn.Linear(hidden_neuron, out_neuron) | |
self.NN_add_sigmoid=config.NN_add_sigmoid | |
def forward(self, x): | |
x = self.input_layer(x) | |
x = F.leaky_relu(x) | |
x = self.hidden_layer(x) | |
x = F.leaky_relu(x) | |
x = self.hidden_layer(x) | |
x = F.leaky_relu(x) | |
x = self.hidden_layer(x) | |
x = F.leaky_relu(x) | |
x = self.output_layer(x) | |
if self.NN_add_sigmoid==True: | |
x = F.sigmoid(x) | |
return x | |
class Model_ML(): | |
def __init__(self,config,X_test): | |
super(Model_ML, self).__init__() | |
self.X_test=X_test | |
self.seed=config.seed | |
self.torch_seed=config.seed | |
self.config=config | |
self.add_dipole = config.add_dipole | |
self.add_molecular_descriptors = config.add_molecular_descriptors | |
self.add_eluent_matrix=config.add_eluent_matrix | |
self.use_sigmoid=config.use_sigmoid | |
self.use_model=config.use_model | |
self.LGB_max_depth=config.LGB_max_depth | |
self.LGB_num_leaves=config.LGB_num_leaves | |
self.LGB_learning_rate=config.LGB_learning_rate | |
self.LGB_n_estimators=config.LGB_n_estimators | |
self.LGB_early_stopping_rounds=config.LGB_early_stopping_rounds | |
self.XGB_n_estimators=config.XGB_n_estimators | |
self.XGB_max_depth = config.XGB_max_depth | |
self.XGB_learning_rate = config.XGB_learning_rate | |
self.RF_n_estimators=config.RF_n_estimators | |
self.RF_random_state=config.RF_random_state | |
self.RF_n_jobs=config.RF_n_jobs | |
self.NN_hidden_neuron=config.NN_hidden_neuron | |
self.NN_optimizer=config.NN_optimizer | |
self.NN_lr= config.NN_lr | |
self.NN_model_save_location=config.NN_model_save_location | |
self.NN_max_epoch=config.NN_max_epoch | |
self.NN_add_PINN=config.NN_add_PINN | |
self.NN_epi=config.NN_epi | |
self.device=config.device | |
self.plot_row_num=config.plot_row_num | |
self.plot_col_num=config.plot_col_num | |
self.plot_importance_num=config.plot_importance_num | |
def load_model(self): | |
model_LGB = lgb.LGBMRegressor(objective='regression', max_depth=self.LGB_max_depth, | |
num_leaves=self.LGB_num_leaves, | |
learning_rate=self.LGB_learning_rate, n_estimators=self.LGB_n_estimators) | |
model_XGB = XGBRegressor(seed=self.seed, | |
n_estimators=self.XGB_n_estimators, | |
max_depth=self.XGB_max_depth, | |
eval_metric='rmse', | |
learning_rate=self.XGB_learning_rate, | |
min_child_weight=1, | |
subsample=1, | |
colsample_bytree=1, | |
colsample_bylevel=1, | |
gamma=0) | |
model_RF = RandomForestRegressor(n_estimators=self.RF_n_estimators, | |
criterion='mse', | |
random_state=self.RF_random_state, | |
n_jobs=self.RF_n_jobs) | |
Net = ANN(self.X_test.shape[1], self.NN_hidden_neuron, 1, config=self.config).to(self.device) | |
#model_LGB = joblib.load('model_LGB.pkl') | |
#wget.download('https://huggingface.co/woshixuhao/Rf_prediction/resolve/main/model_LGB.pkl') | |
#wget.download('https://huggingface.co/woshixuhao/Rf_prediction/resolve/main/model_XGB.pkl') | |
#wget.download('https://huggingface.co/woshixuhao/Rf_prediction/resolve/main/model_RF.pkl') | |
#wget.download('https://huggingface.co/woshixuhao/Rf_prediction/resolve/main/model_ANN.pkl') | |
model_LGB = joblib.load('model_LGB.pkl') | |
model_XGB = joblib.load('model_XGB.pkl') | |
model_RF = joblib.load('model_RF.pkl') | |
Net.load_state_dict(torch.load('model_ANN.pkl',map_location=torch.device('cpu'))) | |
return model_LGB,model_XGB,model_RF,Net | |
def get_Rf(self): | |
model_LGB, model_XGB, model_RF, model_ANN = Model_ML.load_model(self) | |
X_test_ANN = Variable(torch.from_numpy(self.X_test.astype(np.float32)).to(self.device), requires_grad=True) | |
y_pred_ANN = model_ANN(X_test_ANN).cpu().data.numpy() | |
y_pred_ANN = y_pred_ANN.reshape(y_pred_ANN.shape[0], ) | |
y_pred_XGB = model_XGB.predict(self.X_test) | |
if self.use_sigmoid == True: | |
y_pred_XGB = 1 / (1 + np.exp(-y_pred_XGB)) | |
y_pred_LGB = model_LGB.predict(self.X_test) | |
if self.use_sigmoid == True: | |
y_pred_LGB = 1 / (1 + np.exp(-y_pred_LGB)) | |
y_pred_RF = model_RF.predict(self.X_test) | |
if self.use_sigmoid == True: | |
y_pred_RF = 1 / (1 + np.exp(-y_pred_RF)) | |
y_pred = (0.2 * y_pred_LGB + 0.2 * y_pred_XGB + 0.2 * y_pred_RF + 0.4 * y_pred_ANN) | |
return y_pred | |
def get_descriptor(smiles,ratio): | |
compound_mol = Chem.MolFromSmiles(smiles) | |
descriptor=[] | |
descriptor.append(Descriptors.ExactMolWt(compound_mol)) | |
descriptor.append(Chem.rdMolDescriptors.CalcTPSA(compound_mol)) | |
descriptor.append(Descriptors.NumRotatableBonds(compound_mol)) # Number of rotable bonds | |
descriptor.append(Descriptors.NumHDonors(compound_mol)) # Number of H bond donors | |
descriptor.append(Descriptors.NumHAcceptors(compound_mol)) # Number of H bond acceptors | |
descriptor.append(Descriptors.MolLogP(compound_mol)) # LogP | |
descriptor=np.array(descriptor)*ratio | |
return descriptor | |
def get_eluent_descriptor(eluent): | |
eluent=np.array(eluent) | |
des = np.zeros([6,]) | |
for i in range(eluent.shape[0]): | |
if eluent[i] != 0: | |
e_descriptors = get_descriptor(Eluent_smiles[i], eluent[i]) | |
des+=e_descriptors | |
return des | |
def get_data_from_smile(smile, eluent_list): | |
compound_mol = Chem.MolFromSmiles(smile) | |
Finger = MACCSkeys.GenMACCSKeys(Chem.MolFromSmiles(smile)) | |
fingerprint = np.array([x for x in Finger]) | |
compound_finger = fingerprint | |
compound_MolWt = Descriptors.ExactMolWt(compound_mol) | |
compound_TPSA = Chem.rdMolDescriptors.CalcTPSA(compound_mol) | |
compound_nRotB = Descriptors.NumRotatableBonds(compound_mol) # Number of rotable bonds | |
compound_HBD = Descriptors.NumHDonors(compound_mol) # Number of H bond donors | |
compound_HBA = Descriptors.NumHAcceptors(compound_mol) # Number of H bond acceptors | |
compound_LogP = Descriptors.MolLogP(compound_mol) # LogP | |
X_test = np.zeros([1, 179]) | |
X_test[0, 0:167] = compound_finger | |
X_test[0, 167:173] = 0 | |
X_test[0, 173:179] = [compound_MolWt, compound_TPSA, compound_nRotB, compound_HBD, compound_HBA, compound_LogP] | |
eluent_array = get_eluent_descriptor(eluent_list) | |
eluent_array = np.array(eluent_array) | |
X_test[0, 167:173] = eluent_array | |
return X_test | |
def get_data_from_xlsx(file_name): | |
file_open = pd.read_csv(file_name) | |
smiles = file_open['SMILES'].values | |
PEs = file_open['PE'].values | |
EAs = file_open['EA'].values | |
DCMs = file_open['DCM'].values | |
MeOHs = file_open['MeOH'].values | |
Et2Os = file_open['Et2O'].values | |
X_test = np.zeros([len(smiles), 179]) | |
for i in range(len(smiles)): | |
smile=smiles[i] | |
eluent_sum = PEs[i] + EAs[i] + DCMs[i] + MeOHs[i] + Et2Os[i] | |
if eluent_sum != 0: | |
eluent_list = [PEs[i] / eluent_sum, EAs[i] / eluent_sum, DCMs[i] / eluent_sum, MeOHs[i] / eluent_sum, Et2Os[i] / eluent_sum] | |
else: | |
eluent_list = [0, 0, 0, 0, 0] | |
compound_mol = Chem.MolFromSmiles(smile) | |
Finger = MACCSkeys.GenMACCSKeys(Chem.MolFromSmiles(smile)) | |
fingerprint = np.array([x for x in Finger]) | |
compound_finger = fingerprint | |
compound_MolWt = Descriptors.ExactMolWt(compound_mol) | |
compound_TPSA = Chem.rdMolDescriptors.CalcTPSA(compound_mol) | |
compound_nRotB = Descriptors.NumRotatableBonds(compound_mol) # Number of rotable bonds | |
compound_HBD = Descriptors.NumHDonors(compound_mol) # Number of H bond donors | |
compound_HBA = Descriptors.NumHAcceptors(compound_mol) # Number of H bond acceptors | |
compound_LogP = Descriptors.MolLogP(compound_mol) # LogP | |
X_test[i, 0:167] = compound_finger | |
X_test[i, 167:173] = 0 | |
X_test[i, 173:179] = [compound_MolWt, compound_TPSA, compound_nRotB, compound_HBD, compound_HBA, compound_LogP] | |
eluent_array = get_eluent_descriptor(eluent_list) | |
eluent_array = np.array(eluent_array) | |
X_test[i, 167:173] = eluent_array | |
return X_test | |
def predict_single(smile,PE,EA,DCM,MeOH,Et20): | |
if PE==None: | |
PE=0 | |
if EA==None: | |
EA=0 | |
if DCM==None: | |
DCM=0 | |
if MeOH==None: | |
MeOH=0 | |
if Et20==None: | |
Et20=0 | |
config = parse_args() | |
config.add_dipole = False | |
eluent_sum=PE+EA+DCM+MeOH+Et20 | |
if eluent_sum!=0: | |
eluent_list=[PE/eluent_sum,EA/eluent_sum,DCM/eluent_sum,MeOH/eluent_sum,Et20/eluent_sum] | |
else: | |
eluent_list=[0,0,0,0,0] | |
X_test=get_data_from_smile(smile,eluent_list) | |
Model = Model_ML(config,X_test) | |
Rf=Model.get_Rf() | |
return Rf[0] | |
def predict_xlsx(file): | |
file_name=file.name | |
config = parse_args() | |
config.add_dipole = False | |
X_test = get_data_from_xlsx(file_name) | |
Model = Model_ML(config, X_test) | |
Rf = Model.get_Rf() | |
file_open = pd.read_csv(file_name) | |
file_open['Rf']=Rf | |
file_open.to_csv(file_name) | |
return file_name | |
def get_data_from_smile_compare(smile): | |
x_PE = np.array([[0, 1, 0, 0, 0], [0.333333, 0.666667, 0, 0, 0], [0.5, 0.5, 0, 0, 0], | |
[0.75, 0.25, 0, 0, 0], [0.833333, 0.166667, 0, 0, 0], [0.952381, 0.047619, 0, 0, 0], | |
[0.980392, 0.019608, 0, 0, 0], [1, 0, 0, 0, 0]], dtype=np.float32) | |
x_PE=np.flip(x_PE,axis=0) | |
x_ME = np.array([[0, 0, 1, 0, 0], [0, 0, 0.990099, 0.009901, 0], [0, 0, 0.980392, 0.019608, 0], | |
[0, 0, 0.967742, 0.032258, 0], [0, 0, 0.952381, 0.047619, 0], | |
[0, 0, 0.909091, 0.090909, 0]], dtype=np.float32) | |
x_Et = np.array([[1,0,0,0,0],[0.66667, 0, 0, 0, 0.33333], [0.5, 0, 0, 0, 0.5],[0.33333,0,0,0,0.66667], [0, 0, 0, 0, 1]]) | |
compound_mol = Chem.MolFromSmiles(smile) | |
Finger = MACCSkeys.GenMACCSKeys(Chem.MolFromSmiles(smile)) | |
fingerprint = np.array([x for x in Finger]) | |
compound_finger = fingerprint | |
compound_MolWt = Descriptors.ExactMolWt(compound_mol) | |
compound_TPSA = Chem.rdMolDescriptors.CalcTPSA(compound_mol) | |
compound_nRotB = Descriptors.NumRotatableBonds(compound_mol) # Number of rotable bonds | |
compound_HBD = Descriptors.NumHDonors(compound_mol) # Number of H bond donors | |
compound_HBA = Descriptors.NumHAcceptors(compound_mol) # Number of H bond acceptors | |
compound_LogP = Descriptors.MolLogP(compound_mol) # LogP | |
X_test_PE=[] | |
X_test_ME=[] | |
X_test_Et=[] | |
X_test = np.zeros([1, 179]) | |
X_test[0, 0:167] = compound_finger | |
X_test[0, 167:173] = 0 | |
X_test[0, 173:179] = [compound_MolWt, compound_TPSA, compound_nRotB, compound_HBD, compound_HBA, compound_LogP] | |
for x in x_PE: | |
X_test[0, 167:173] =get_eluent_descriptor(x) | |
X_test_PE.append(X_test.copy()) | |
for x in x_ME: | |
X_test[0, 167:173] = get_eluent_descriptor(x) | |
X_test_ME.append(X_test.copy()) | |
for x in x_Et: | |
X_test[0, 167:173] = get_eluent_descriptor(x) | |
X_test_Et.append(X_test.copy()) | |
X_test_PE=np.squeeze(np.array(X_test_PE)) | |
X_test_Et=np.squeeze(np.array(X_test_Et)) | |
X_test_ME=np.squeeze(np.array(X_test_ME)) | |
return X_test_PE,X_test_Et,X_test_ME | |
def convert_fig_PIL(fig): | |
canvas = FigureCanvasAgg(fig) | |
canvas.draw() | |
w, h = canvas.get_width_height() | |
buf = np.fromstring(canvas.tostring_argb(), dtype=np.uint8) | |
buf.shape = (w, h, 4) | |
buf = np.roll(buf, 3, axis=2) | |
image = Image.frombytes("RGBA", (w, h), buf.tostring()) | |
return image | |
def predict_compare(smile_1,smile_2): | |
config = parse_args() | |
config.add_dipole = False | |
X_test_PE_1,X_test_Et_1,X_test_ME_1=get_data_from_smile_compare(smile_1) | |
X_test_PE_2,X_test_Et_2,X_test_ME_2=get_data_from_smile_compare(smile_2) | |
Rf_all=[] | |
for x_test in [X_test_PE_1,X_test_Et_1,X_test_ME_1,X_test_PE_2,X_test_Et_2,X_test_ME_2]: | |
Model = Model_ML(config,x_test) | |
Rf=Model.get_Rf() | |
Rf_all.append(Rf) | |
fig1=plot_Rf(Rf_all[0],Rf_all[3],'PE:EA') | |
fig2 = plot_Rf(Rf_all[2], Rf_all[5], 'DCM:MeOH') | |
fig3 = plot_Rf(Rf_all[1], Rf_all[4], 'PE:Et2O') | |
fig1=convert_fig_PIL(fig1) | |
fig2=convert_fig_PIL(fig2) | |
fig3=convert_fig_PIL(fig3) | |
return fig1,fig2,fig3 | |
def plot_Rf(Rf_1,Rf_2,eluent): | |
EA = np.array([0, 0.019608, 0.047619, 0.166667, 0.25, 0.5, 0.666667, 1]) | |
ME = np.array([0, 0.009901, 0.019608, 0.032258, 0.047619, 0.090909]) | |
Et = np.array([0, 0.33333, 0.5, 0.66667, 1]) | |
font1 = {'family': 'Arial', | |
'weight': 'normal', | |
'size': 5} | |
if eluent=='PE:EA': | |
fig = plt.figure(1, figsize=(2, 2), dpi=300) | |
plt.clf() | |
ax = plt.subplot(1, 1, 1) | |
plt.plot(np.arange(0,EA.shape[0],1), Rf_1, c='#82B0D2', label='SMILE_1', zorder=1) | |
plt.plot(np.arange(0,EA.shape[0],1), Rf_2, c='#8A83B4', label='SMILE_2', zorder=1) | |
plt.scatter(np.arange(0,EA.shape[0],1), Rf_1, color='white', edgecolors='black', marker='^', s=10, zorder=1,linewidths=0.5) | |
plt.scatter(np.arange(0,EA.shape[0],1), Rf_2, color='white', edgecolors='black', marker='*', s=10, zorder=2,linewidths=0.5) | |
plt.xlabel('PE:EA',font1) | |
plt.ylabel('Rf',font1) | |
plt.xticks(np.arange(0,EA.shape[0],1), ['1:0','50:1','20:1','5:1','3:1','1:1','1:2','0:1'],fontproperties='Arial', size=4) | |
plt.yticks([0,0.2,0.4,0.6,0.8,1.0],[0,0.2,0.4,0.6,0.8,1.0],fontproperties='Arial', size=4) | |
plt.legend(loc='lower right', prop=font1) | |
if eluent == 'DCM:MeOH': | |
fig = plt.figure(2, figsize=(2, 2), dpi=300) | |
plt.clf() | |
ax = plt.subplot(1, 1, 1) | |
plt.plot(np.arange(0,ME.shape[0],1), Rf_1, c='#82B0D2', label='SMILE_1', zorder=1) | |
plt.plot(np.arange(0,ME.shape[0],1), Rf_2, c='#8A83B4', label='SMILE_2', zorder=1) | |
plt.scatter(np.arange(0,ME.shape[0],1), Rf_1, color='white', edgecolors='black', marker='^', s=10, zorder=1,linewidths=0.5) | |
plt.scatter(np.arange(0,ME.shape[0],1), Rf_2, color='white', edgecolors='black', marker='*', s=10, zorder=2,linewidths=0.5) | |
plt.xlabel('DCM:MeOH', font1) | |
plt.ylabel('Rf', font1) | |
plt.xticks(np.arange(0,ME.shape[0],1), ['1:0','100:1','50:1','30:1','20:1','10:1'], fontproperties='Arial', size=4) | |
plt.yticks([0, 0.2, 0.4, 0.6, 0.8, 1.0], [0, 0.2, 0.4, 0.6, 0.8, 1.0], fontproperties='Arial', size=4) | |
plt.legend(loc='lower right', prop=font1) | |
if eluent == 'PE:Et2O': | |
fig = plt.figure(3, figsize=(2, 2), dpi=300) | |
plt.clf() | |
ax = plt.subplot(1, 1, 1) | |
plt.plot(np.arange(0,Et.shape[0],1), Rf_1, c='#82B0D2', label='SMILE_1', zorder=1) | |
plt.plot(np.arange(0,Et.shape[0],1), Rf_2, c='#8A83B4', label='SMILE_2', zorder=1) | |
plt.scatter(np.arange(0,Et.shape[0],1), Rf_1, color='white', edgecolors='black', marker='^', s=10, zorder=1,linewidths=0.5) | |
plt.scatter(np.arange(0,Et.shape[0],1), Rf_2, color='white', edgecolors='black', marker='*', s=10, zorder=2,linewidths=0.5) | |
plt.xlabel('PE:Et2O', font1) | |
plt.ylabel('Rf', font1) | |
plt.xticks(np.arange(0,Et.shape[0],1), ['1:0','2:1','1:1','1:2','0:1'], fontproperties='Arial', size=4) | |
plt.yticks([0, 0.2, 0.4, 0.6, 0.8, 1.0], [0, 0.2, 0.4, 0.6, 0.8, 1.0], fontproperties='Arial', size=4) | |
plt.legend(loc='lower right', prop=font1) | |
plt.title(eluent,font1) | |
plt.tight_layout() | |
plt.ylim(-0.1, 1.1) | |
return fig | |
if __name__=='__main__': | |
theme = gr.themes.Monochrome( | |
primary_hue="indigo", | |
secondary_hue="blue", | |
neutral_hue="slate", | |
) | |
model_card = f""" | |
## Description\n | |
It is a app for predicting Rf values of a compound under given eluents in TLC.\n | |
input: smiles of one compound, such as CC(OCC)=O, and the ratio of five solvents, example: 20 1 0 0 0 for PE:EA=20:1\n | |
output: the predicted Rf value.\n\n | |
## Citation\n | |
We would appreciate it if you use our software and give us credit in the acknowledgements section of your paper:\n | |
we use RF prediction software in our synthesis work. [Citation 1, Citation 2]\n | |
Citation1: H. Xu, J. Lin, Q. Liu, Y. Chen, J. Zhang, Y. Yang, M.C. Young, Y. Xu, D. Zhang, F. Mo | |
High-throughput discovery of chemical structure-polarity relationships combining automation and machine-learning techniques | |
Chem (2022), 3202–3214, 10.1016/j.chempr.2022.08.008\n | |
Citation2: https://huggingface.co/spaces/woshixuhao/Rf_prediction\n | |
Business applications require authorization! | |
## Function\n | |
Single predict: predict a compound under a given eluent system\n | |
Batch predict: Upload a .csv file with multiple conditions to conduct batch prediction\n | |
Rf compare: predict Rf values of two compounds under different eluents in TLC | |
""" | |
with gr.Blocks() as demo: | |
gr.Markdown(''' | |
<div> | |
<h1 style='text-align: center'>Rf prediction</h1> | |
</div> | |
''') | |
gr.Markdown(model_card) | |
with gr.Tab("Single prediction"): | |
gr.Interface(fn=predict_single, inputs=["text", "number","number","number","number","number"], outputs='number') | |
with gr.Tab("Batch prediction"): | |
gr.Interface(fn=predict_xlsx,description='please upload a .csv file formatted in the form of the example', inputs="file", outputs="file",examples=[os.path.join(os.path.dirname(__file__),"TLC_1.csv")],cache_examples=True) | |
with gr.Tab("Rf compare"): | |
gr.Interface(fn=predict_compare, inputs=["text", "text"], outputs=["image","image","image"], | |
description='input: smiles of two compounds, such as CC(OCC)=O and CCOCC\n output: three images that show the Rf curve with different eluent ratios under PE/EA, DCM/MeOH, PE/Et2O system.\n\n') | |
demo.launch() | |
# smile='O=C(OC1C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C(COC(C)=O)O1)C' | |
# eluent=[0,0.9,0,0,0] | |
# print(predict_single(smile,1,0,0,0,0)) | |