|
import gradio as gr |
|
import subprocess |
|
import torch |
|
from PIL import Image |
|
from transformers import AutoProcessor, AutoModelForCausalLM |
|
|
|
|
|
|
|
|
|
|
|
|
|
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) |
|
|
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
florence_model = AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True).to(device).eval() |
|
florence_processor = AutoProcessor.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True) |
|
|
|
|
|
|
|
def generate_caption(image): |
|
if not isinstance(image, Image.Image): |
|
image = Image.fromarray(image) |
|
|
|
inputs = florence_processor(text="<MORE_DETAILED_CAPTION>", images=image, return_tensors="pt").to(device) |
|
generated_ids = florence_model.generate( |
|
input_ids=inputs["input_ids"], |
|
pixel_values=inputs["pixel_values"], |
|
max_new_tokens=1024, |
|
early_stopping=False, |
|
do_sample=False, |
|
num_beams=3, |
|
) |
|
generated_text = florence_processor.batch_decode(generated_ids, skip_special_tokens=False)[0] |
|
parsed_answer = florence_processor.post_process_generation( |
|
generated_text, |
|
task="<MORE_DETAILED_CAPTION>", |
|
image_size=(image.width, image.height) |
|
) |
|
prompt = parsed_answer["<MORE_DETAILED_CAPTION>"] |
|
print("\n\nGeneration completed!:"+ prompt) |
|
return prompt |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
io = gr.Interface(generate_caption, |
|
inputs=[gr.Image(label="Input Image")], |
|
outputs = [gr.Textbox(label="Output Prompt", lines=2, show_copy_button = True), |
|
|
|
] |
|
) |
|
io.launch(debug=True) |