CraftsMan3D / configs /shape-autoencoder /michelangelo-l768-e64-ne8-nd16.yaml
wyysf's picture
update to v1.5
8133633
exp_root_dir: "outputs"
name: "michelangelo-autoencoder/michelangelo-l768-e64-ne8-nd16"
tag: "${rmspace:n${data.n_samples}+${data.supervision_type}+rot${data.rotate_points}+noise${data.noise_sigma}+${system.shape_model.embed_type}+dsample${system.shape_model.use_downsample}+pfeat${system.shape_model.point_feats}+logits${system.loss.lambda_logits}+kl${system.loss.lambda_kl}+lr${system.optimizer.args.lr},_}"
seed: 0
data_type: "Objaverse-datamodule"
data:
root_dir: ./data/objaverse
load_geometry: True # whether to load geometry
geo_data_type: "tsdf"
n_samples: 10240
load_supervision: True
supervision_type: "occupancy"
n_supervision: 10240
tsdf_threshold: 0.0078125 # threshold for truncating sdf values, used when input is sdf
load_image: False # whether to load images
load_caption: False # whether to load captions
batch_size: 8
num_workers: 0
system_type: "shape-autoencoder-system"
system:
sample_posterior: true
shape_model_type: "michelangelo-autoencoder"
shape_model:
num_latents: 1024 # 1024
embed_dim: 64
point_feats: 3 # xyz + normal
out_dim: 1 # only occupancy
embed_type: "fourier"
num_freqs: 8
include_pi: false
heads: 12
width: 768
num_encoder_layers: 8
num_decoder_layers: 16
use_ln_post: true
init_scale: 0.25
qkv_bias: true
use_flash: true
use_checkpoint: true
use_downsample: true
loggers:
wandb:
enable: false
project: "CraftsMan"
name: shape-autoencoder+${name}+${tag}
loss:
lambda_logits: 1.
lambda_kl: 0.001
optimizer:
name: AdamW
args:
lr: 1.e-4
betas: [0.9, 0.99]
eps: 1.e-6
scheduler:
name: SequentialLR
interval: step
schedulers:
- name: LinearLR
interval: step
args:
start_factor: 1e-6
end_factor: 1.0
total_iters: 5000
- name: CosineAnnealingLR
interval: step
args:
T_max: 5000
eta_min: 0.
milestones: [5000]
trainer:
num_nodes: 1
max_epochs: 100000
log_every_n_steps: 5
num_sanity_val_steps: 1
check_val_every_n_epoch: 600
enable_progress_bar: true
precision: 16-mixed
checkpoint:
save_last: true
save_top_k: -1
every_n_train_steps: 5000