Spaces:
Running
on
Zero
Running
on
Zero
- apps/__pycache__/mv_models.cpython-38.pyc +0 -0
- apps/examples/toy1.webp +0 -0
- apps/mv_models.py +2 -0
- gradio_app copy.py +279 -0
- gradio_app.py +28 -4
apps/__pycache__/mv_models.cpython-38.pyc
CHANGED
Binary files a/apps/__pycache__/mv_models.cpython-38.pyc and b/apps/__pycache__/mv_models.cpython-38.pyc differ
|
|
apps/examples/toy1.webp
DELETED
Binary file (13.8 kB)
|
|
apps/mv_models.py
CHANGED
@@ -54,6 +54,8 @@ class GenMVImage(object):
|
|
54 |
|
55 |
@spaces.GPU
|
56 |
def gen_image_from_mvdream(self, image, text):
|
|
|
|
|
57 |
from .third_party.mvdream_diffusers.pipeline_mvdream import MVDreamPipeline
|
58 |
if image is None:
|
59 |
if "mvdream" in self.pipelines.keys():
|
|
|
54 |
|
55 |
@spaces.GPU
|
56 |
def gen_image_from_mvdream(self, image, text):
|
57 |
+
sys.path.append(f"{parent_dir}/apps/third_party/mvdream_diffusers")
|
58 |
+
|
59 |
from .third_party.mvdream_diffusers.pipeline_mvdream import MVDreamPipeline
|
60 |
if image is None:
|
61 |
if "mvdream" in self.pipelines.keys():
|
gradio_app copy.py
ADDED
@@ -0,0 +1,279 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
+
import argparse
|
3 |
+
import os
|
4 |
+
import json
|
5 |
+
import torch
|
6 |
+
import sys
|
7 |
+
import time
|
8 |
+
import importlib
|
9 |
+
import numpy as np
|
10 |
+
from omegaconf import OmegaConf
|
11 |
+
from huggingface_hub import hf_hub_download
|
12 |
+
|
13 |
+
from collections import OrderedDict
|
14 |
+
import trimesh
|
15 |
+
from einops import repeat, rearrange
|
16 |
+
import pytorch_lightning as pl
|
17 |
+
from typing import Dict, Optional, Tuple, List
|
18 |
+
import gradio as gr
|
19 |
+
|
20 |
+
proj_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
21 |
+
sys.path.append(os.path.join(proj_dir))
|
22 |
+
|
23 |
+
import tempfile
|
24 |
+
import craftsman
|
25 |
+
from craftsman.systems.base import BaseSystem
|
26 |
+
from craftsman.utils.config import ExperimentConfig, load_config
|
27 |
+
|
28 |
+
from apps.utils import *
|
29 |
+
from apps.mv_models import GenMVImage
|
30 |
+
|
31 |
+
_TITLE = '''CraftsMan: High-fidelity Mesh Generation with 3D Native Generation and Interactive Geometry Refiner'''
|
32 |
+
_DESCRIPTION = '''
|
33 |
+
<div>
|
34 |
+
Select or upload a image, then just click 'Generate'.
|
35 |
+
<br>
|
36 |
+
By mimicking the artist/craftsman modeling workflow, we propose CraftsMan (aka ε εΏ) that uses 3D Latent Set Diffusion Model that directly generate coarse meshes,
|
37 |
+
then a multi-view normal enhanced image generation model is used to refine the mesh.
|
38 |
+
We provide the coarse 3D diffusion part here.
|
39 |
+
<br>
|
40 |
+
If you found Crafts is helpful, please help to β the <a href='https://github.com/wyysf-98/CraftsMan/' target='_blank'>Github Repo</a>. Thanks!
|
41 |
+
<a style="display:inline-block; margin-left: .5em" href='https://github.com/wyysf-98/CraftsMan/'><img src='https://img.shields.io/github/stars/wyysf-98/CraftsMan?style=social' /></a>
|
42 |
+
<br>
|
43 |
+
*please note that the model is fliped due to the gradio viewer, please download the obj file and you will get the correct mesh.
|
44 |
+
<br>
|
45 |
+
*If you have your own multi-view images, you can directly upload it.
|
46 |
+
</div>
|
47 |
+
'''
|
48 |
+
_CITE_ = r"""
|
49 |
+
---
|
50 |
+
π **Citation**
|
51 |
+
If you find our work useful for your research or applications, please cite using this bibtex:
|
52 |
+
```bibtex
|
53 |
+
@article{craftsman,
|
54 |
+
author = {Weiyu Li and Jiarui Liu and Rui Chen and Yixun Liang and Xuelin Chen and Ping Tan and Xiaoxiao Long},
|
55 |
+
title = {CraftsMan: High-fidelity Mesh Generation with 3D Native Generation and Interactive Geometry Refiner},
|
56 |
+
journal = {arxiv:xxx},
|
57 |
+
year = {2024},
|
58 |
+
}
|
59 |
+
```
|
60 |
+
π€ **Acknowledgements**
|
61 |
+
We use <a href='https://github.com/wjakob/instant-meshes' target='_blank'>Instant Meshes</a> to remesh the generated mesh to a lower face count, thanks to the authors for the great work.
|
62 |
+
π **License**
|
63 |
+
CraftsMan is under [AGPL-3.0](https://www.gnu.org/licenses/agpl-3.0.en.html), so any downstream solution and products (including cloud services) that include CraftsMan code or a trained model (both pretrained or custom trained) inside it should be open-sourced to comply with the AGPL conditions. If you have any questions about the usage of CraftsMan, please contact us first.
|
64 |
+
π§ **Contact**
|
65 |
+
If you have any questions, feel free to open a discussion or contact us at <b>weiyuli.cn@gmail.com</b>.
|
66 |
+
"""
|
67 |
+
|
68 |
+
model = None
|
69 |
+
cached_dir = None
|
70 |
+
|
71 |
+
@spaces.GPU
|
72 |
+
def image2mesh(view_front: np.ndarray,
|
73 |
+
view_right: np.ndarray,
|
74 |
+
view_back: np.ndarray,
|
75 |
+
view_left: np.ndarray,
|
76 |
+
more: bool = False,
|
77 |
+
scheluder_name: str ="DDIMScheduler",
|
78 |
+
guidance_scale: int = 7.5,
|
79 |
+
seed: int = 4,
|
80 |
+
octree_depth: int = 7):
|
81 |
+
|
82 |
+
sample_inputs = {
|
83 |
+
"mvimages": [[
|
84 |
+
Image.fromarray(view_front),
|
85 |
+
Image.fromarray(view_right),
|
86 |
+
Image.fromarray(view_back),
|
87 |
+
Image.fromarray(view_left)
|
88 |
+
]]
|
89 |
+
}
|
90 |
+
|
91 |
+
global model
|
92 |
+
latents = model.sample(
|
93 |
+
sample_inputs,
|
94 |
+
sample_times=1,
|
95 |
+
guidance_scale=guidance_scale,
|
96 |
+
return_intermediates=False,
|
97 |
+
seed=seed
|
98 |
+
|
99 |
+
)[0]
|
100 |
+
|
101 |
+
# decode the latents to mesh
|
102 |
+
box_v = 1.1
|
103 |
+
mesh_outputs, _ = model.shape_model.extract_geometry(
|
104 |
+
latents,
|
105 |
+
bounds=[-box_v, -box_v, -box_v, box_v, box_v, box_v],
|
106 |
+
octree_depth=octree_depth
|
107 |
+
)
|
108 |
+
assert len(mesh_outputs) == 1, "Only support single mesh output for gradio demo"
|
109 |
+
mesh = trimesh.Trimesh(mesh_outputs[0][0], mesh_outputs[0][1])
|
110 |
+
# filepath = f"{cached_dir}/{time.time()}.obj"
|
111 |
+
filepath = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False).name
|
112 |
+
mesh.export(filepath, include_normals=True)
|
113 |
+
|
114 |
+
if 'Remesh' in more:
|
115 |
+
remeshed_filepath = tempfile.NamedTemporaryFile(suffix=f"_remeshed.obj", delete=False).name
|
116 |
+
print("Remeshing with Instant Meshes...")
|
117 |
+
# target_face_count = int(len(mesh.faces)/10)
|
118 |
+
target_face_count = 1000
|
119 |
+
command = f"{proj_dir}/apps/third_party/InstantMeshes {filepath} -f {target_face_count} -o {remeshed_filepath}"
|
120 |
+
os.system(command)
|
121 |
+
filepath = remeshed_filepath
|
122 |
+
# filepath = filepath.replace('.obj', '_remeshed.obj')
|
123 |
+
|
124 |
+
return filepath
|
125 |
+
|
126 |
+
if __name__=="__main__":
|
127 |
+
parser = argparse.ArgumentParser()
|
128 |
+
# parser.add_argument("--model_path", type=str, required=True, help="Path to the object file",)
|
129 |
+
parser.add_argument("--cached_dir", type=str, default="./gradio_cached_dir")
|
130 |
+
parser.add_argument("--device", type=int, default=0)
|
131 |
+
args = parser.parse_args()
|
132 |
+
|
133 |
+
cached_dir = args.cached_dir
|
134 |
+
os.makedirs(args.cached_dir, exist_ok=True)
|
135 |
+
device = torch.device(f"cuda:{args.device}" if torch.cuda.is_available() else "cpu")
|
136 |
+
print(f"using device: {device}")
|
137 |
+
|
138 |
+
# for multi-view images generation
|
139 |
+
background_choice = OrderedDict({
|
140 |
+
"Alpha as Mask": "Alpha as Mask",
|
141 |
+
"Auto Remove Background": "Auto Remove Background",
|
142 |
+
"Original Image": "Original Image",
|
143 |
+
})
|
144 |
+
# mvimg_model_config_list = ["CRM"]
|
145 |
+
mvimg_model_config_list = ["CRM", "ImageDream", "Wonder3D"]
|
146 |
+
|
147 |
+
# for 3D latent set diffusion
|
148 |
+
ckpt_path = hf_hub_download(repo_id="wyysf/CraftsMan", filename="image-to-shape-diffusion/clip-mvrgb-modln-l256-e64-ne8-nd16-nl6/model.ckpt", repo_type="model")
|
149 |
+
config_path = hf_hub_download(repo_id="wyysf/CraftsMan", filename="image-to-shape-diffusion/clip-mvrgb-modln-l256-e64-ne8-nd16-nl6/config.yaml", repo_type="model")
|
150 |
+
scheluder_dict = OrderedDict({
|
151 |
+
"DDIMScheduler": 'diffusers.schedulers.DDIMScheduler',
|
152 |
+
# "DPMSolverMultistepScheduler": 'diffusers.schedulers.DPMSolverMultistepScheduler', # not support yet
|
153 |
+
# "UniPCMultistepScheduler": 'diffusers.schedulers.UniPCMultistepScheduler', # not support yet
|
154 |
+
})
|
155 |
+
|
156 |
+
# main GUI
|
157 |
+
custom_theme = gr.themes.Soft(primary_hue="blue").set(
|
158 |
+
button_secondary_background_fill="*neutral_100",
|
159 |
+
button_secondary_background_fill_hover="*neutral_200")
|
160 |
+
custom_css = '''#disp_image {
|
161 |
+
text-align: center; /* Horizontally center the content */
|
162 |
+
}'''
|
163 |
+
|
164 |
+
with gr.Blocks(title=_TITLE, theme=custom_theme, css=custom_css) as demo:
|
165 |
+
with gr.Row():
|
166 |
+
with gr.Column(scale=1):
|
167 |
+
gr.Markdown('# ' + _TITLE)
|
168 |
+
gr.Markdown(_DESCRIPTION)
|
169 |
+
|
170 |
+
with gr.Row():
|
171 |
+
with gr.Column(scale=2):
|
172 |
+
with gr.Row():
|
173 |
+
image_input = gr.Image(
|
174 |
+
label="Image Input",
|
175 |
+
image_mode="RGBA",
|
176 |
+
sources="upload",
|
177 |
+
type="pil",
|
178 |
+
)
|
179 |
+
with gr.Row():
|
180 |
+
text = gr.Textbox(label="Prompt (Optional, only works for mvdream)", visible=False)
|
181 |
+
with gr.Row():
|
182 |
+
gr.Markdown('''Try a different <b>seed</b> if the result is unsatisfying. Good Luck :)''')
|
183 |
+
with gr.Row():
|
184 |
+
seed = gr.Number(42, label='Seed', show_label=True)
|
185 |
+
more = gr.CheckboxGroup(["Remesh", "Symmetry(TBD)"], label="More", show_label=False)
|
186 |
+
# remesh = gr.Checkbox(value=False, label='Remesh')
|
187 |
+
# symmetry = gr.Checkbox(value=False, label='Symmetry(TBD)', interactive=False)
|
188 |
+
run_btn = gr.Button('Generate', variant='primary', interactive=True)
|
189 |
+
|
190 |
+
with gr.Row():
|
191 |
+
gr.Examples(
|
192 |
+
examples=[os.path.join("./apps/examples", i) for i in os.listdir("./apps/examples")],
|
193 |
+
inputs=[image_input],
|
194 |
+
examples_per_page=8
|
195 |
+
)
|
196 |
+
|
197 |
+
with gr.Column(scale=4):
|
198 |
+
with gr.Row():
|
199 |
+
output_model_obj = gr.Model3D(
|
200 |
+
label="Output Model (OBJ Format)",
|
201 |
+
camera_position=(90.0, 90.0, 3.5),
|
202 |
+
interactive=False,
|
203 |
+
)
|
204 |
+
|
205 |
+
with gr.Row():
|
206 |
+
view_front = gr.Image(label="Front", interactive=True, show_label=True)
|
207 |
+
view_right = gr.Image(label="Right", interactive=True, show_label=True)
|
208 |
+
view_back = gr.Image(label="Back", interactive=True, show_label=True)
|
209 |
+
view_left = gr.Image(label="Left", interactive=True, show_label=True)
|
210 |
+
|
211 |
+
# with gr.Accordion('Advanced options', open=False):
|
212 |
+
with gr.Row(equal_height=True):
|
213 |
+
run_mv_btn = gr.Button('Only Generate 2D', interactive=True)
|
214 |
+
run_3d_btn = gr.Button('Only Generate 3D', interactive=True)
|
215 |
+
|
216 |
+
with gr.Accordion('Advanced options (2D)', open=False):
|
217 |
+
with gr.Row():
|
218 |
+
crop_size = gr.Number(224, label='Crop size')
|
219 |
+
mvimg_model = gr.Dropdown(value="CRM", label="MV Image Model", choices=mvimg_model_config_list)
|
220 |
+
|
221 |
+
with gr.Row():
|
222 |
+
foreground_ratio = gr.Slider(
|
223 |
+
label="Foreground Ratio",
|
224 |
+
minimum=0.5,
|
225 |
+
maximum=1.0,
|
226 |
+
value=1.0,
|
227 |
+
step=0.05,
|
228 |
+
)
|
229 |
+
|
230 |
+
with gr.Row():
|
231 |
+
background_choice = gr.Dropdown(label="Backgroud Choice", value="Auto Remove Background",choices=list(background_choice.keys()))
|
232 |
+
rmbg_type = gr.Dropdown(label="Backgroud Remove Type", value="rembg",choices=['sam', "rembg"])
|
233 |
+
backgroud_color = gr.ColorPicker(label="Background Color", value="#FFFFFF", interactive=True)
|
234 |
+
|
235 |
+
with gr.Row():
|
236 |
+
mvimg_guidance_scale = gr.Number(value=3.5, minimum=3, maximum=10, label="2D Guidance Scale")
|
237 |
+
mvimg_steps = gr.Number(value=30, minimum=20, maximum=100, label="2D Sample Steps", precision=0)
|
238 |
+
|
239 |
+
with gr.Accordion('Advanced options (3D)', open=False):
|
240 |
+
with gr.Row():
|
241 |
+
guidance_scale = gr.Number(label="3D Guidance Scale", value=7.5, minimum=3.0, maximum=10.0)
|
242 |
+
steps = gr.Number(value=50, minimum=20, maximum=100, label="3D Sample Steps", precision=0)
|
243 |
+
|
244 |
+
with gr.Row():
|
245 |
+
scheduler = gr.Dropdown(label="scheluder", value="DDIMScheduler",choices=list(scheluder_dict.keys()))
|
246 |
+
octree_depth = gr.Slider(label="Octree Depth", value=7, minimum=4, maximum=8, step=1)
|
247 |
+
|
248 |
+
gr.Markdown(_CITE_)
|
249 |
+
|
250 |
+
outputs = [output_model_obj]
|
251 |
+
rmbg = RMBG(device)
|
252 |
+
|
253 |
+
gen_mvimg = GenMVImage(device)
|
254 |
+
model = load_model(ckpt_path, config_path, device)
|
255 |
+
|
256 |
+
run_btn.click(fn=check_input_image, inputs=[image_input]
|
257 |
+
).success(
|
258 |
+
fn=rmbg.run,
|
259 |
+
inputs=[rmbg_type, image_input, crop_size, foreground_ratio, background_choice, backgroud_color],
|
260 |
+
outputs=[image_input]
|
261 |
+
).success(
|
262 |
+
fn=gen_mvimg.run,
|
263 |
+
inputs=[mvimg_model, text, image_input, crop_size, seed, mvimg_guidance_scale, mvimg_steps],
|
264 |
+
outputs=[view_front, view_right, view_back, view_left]
|
265 |
+
).success(
|
266 |
+
fn=image2mesh,
|
267 |
+
inputs=[view_front, view_right, view_back, view_left, more, scheduler, guidance_scale, seed, octree_depth],
|
268 |
+
outputs=outputs,
|
269 |
+
api_name="generate_img2obj")
|
270 |
+
run_mv_btn.click(fn=gen_mvimg.run,
|
271 |
+
inputs=[mvimg_model, text, image_input, crop_size, seed, mvimg_guidance_scale, mvimg_steps],
|
272 |
+
outputs=[view_front, view_right, view_back, view_left]
|
273 |
+
)
|
274 |
+
run_3d_btn.click(fn=image2mesh,
|
275 |
+
inputs=[view_front, view_right, view_back, view_left, more, scheduler, guidance_scale, seed, octree_depth],
|
276 |
+
outputs=outputs,
|
277 |
+
api_name="generate_img2obj")
|
278 |
+
|
279 |
+
demo.queue().launch(share=True, allowed_paths=[args.cached_dir])
|
gradio_app.py
CHANGED
@@ -64,9 +64,26 @@ CraftsMan is under [AGPL-3.0](https://www.gnu.org/licenses/agpl-3.0.en.html), so
|
|
64 |
π§ **Contact**
|
65 |
If you have any questions, feel free to open a discussion or contact us at <b>weiyuli.cn@gmail.com</b>.
|
66 |
"""
|
|
|
67 |
|
68 |
model = None
|
69 |
cached_dir = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
@spaces.GPU
|
72 |
def image2mesh(view_front: np.ndarray,
|
@@ -134,7 +151,14 @@ if __name__=="__main__":
|
|
134 |
os.makedirs(args.cached_dir, exist_ok=True)
|
135 |
device = torch.device(f"cuda:{args.device}" if torch.cuda.is_available() else "cpu")
|
136 |
print(f"using device: {device}")
|
137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
# for multi-view images generation
|
139 |
background_choice = OrderedDict({
|
140 |
"Alpha as Mask": "Alpha as Mask",
|
@@ -250,7 +274,7 @@ if __name__=="__main__":
|
|
250 |
outputs = [output_model_obj]
|
251 |
rmbg = RMBG(device)
|
252 |
|
253 |
-
gen_mvimg = GenMVImage(device)
|
254 |
model = load_model(ckpt_path, config_path, device)
|
255 |
|
256 |
run_btn.click(fn=check_input_image, inputs=[image_input]
|
@@ -259,7 +283,7 @@ if __name__=="__main__":
|
|
259 |
inputs=[rmbg_type, image_input, crop_size, foreground_ratio, background_choice, backgroud_color],
|
260 |
outputs=[image_input]
|
261 |
).success(
|
262 |
-
fn=gen_mvimg
|
263 |
inputs=[mvimg_model, text, image_input, crop_size, seed, mvimg_guidance_scale, mvimg_steps],
|
264 |
outputs=[view_front, view_right, view_back, view_left]
|
265 |
).success(
|
@@ -267,7 +291,7 @@ if __name__=="__main__":
|
|
267 |
inputs=[view_front, view_right, view_back, view_left, more, scheduler, guidance_scale, seed, octree_depth],
|
268 |
outputs=outputs,
|
269 |
api_name="generate_img2obj")
|
270 |
-
run_mv_btn.click(fn=gen_mvimg
|
271 |
inputs=[mvimg_model, text, image_input, crop_size, seed, mvimg_guidance_scale, mvimg_steps],
|
272 |
outputs=[view_front, view_right, view_back, view_left]
|
273 |
)
|
|
|
64 |
π§ **Contact**
|
65 |
If you have any questions, feel free to open a discussion or contact us at <b>weiyuli.cn@gmail.com</b>.
|
66 |
"""
|
67 |
+
from apps.third_party.CRM.pipelines import TwoStagePipeline
|
68 |
|
69 |
model = None
|
70 |
cached_dir = None
|
71 |
+
stage1_config = OmegaConf.load(f"{parent_dir}/apps/third_party/CRM/configs/nf7_v3_SNR_rd_size_stroke.yaml").config
|
72 |
+
stage1_sampler_config = stage1_config.sampler
|
73 |
+
stage1_model_config = stage1_config.models
|
74 |
+
stage1_model_config.resume = hf_hub_download(repo_id="Zhengyi/CRM", filename="pixel-diffusion.pth", repo_type="model")
|
75 |
+
stage1_model_config.config = f"{parent_dir}/apps/third_party/CRM/" + stage1_model_config.config
|
76 |
+
crm_pipeline = None
|
77 |
+
|
78 |
+
@spaces.GPU
|
79 |
+
def gen_mvimg(
|
80 |
+
mvimg_model, text, image, crop_size, seed, guidance_scale, step
|
81 |
+
):
|
82 |
+
global crm_pipeline
|
83 |
+
crm_pipeline.set_seed(seed)
|
84 |
+
rt_dict = crm_pipeline(image, scale=guidance_scale, step=step)
|
85 |
+
mv_imgs = rt_dict["stage1_images"]
|
86 |
+
return mv_imgs[5], mv_imgs[3], mv_imgs[2], mv_imgs[0]
|
87 |
|
88 |
@spaces.GPU
|
89 |
def image2mesh(view_front: np.ndarray,
|
|
|
151 |
os.makedirs(args.cached_dir, exist_ok=True)
|
152 |
device = torch.device(f"cuda:{args.device}" if torch.cuda.is_available() else "cpu")
|
153 |
print(f"using device: {device}")
|
154 |
+
|
155 |
+
crm_pipeline = TwoStagePipeline(
|
156 |
+
stage1_model_config,
|
157 |
+
stage1_sampler_config,
|
158 |
+
device=device,
|
159 |
+
dtype=torch.float16
|
160 |
+
)
|
161 |
+
|
162 |
# for multi-view images generation
|
163 |
background_choice = OrderedDict({
|
164 |
"Alpha as Mask": "Alpha as Mask",
|
|
|
274 |
outputs = [output_model_obj]
|
275 |
rmbg = RMBG(device)
|
276 |
|
277 |
+
# gen_mvimg = GenMVImage(device)
|
278 |
model = load_model(ckpt_path, config_path, device)
|
279 |
|
280 |
run_btn.click(fn=check_input_image, inputs=[image_input]
|
|
|
283 |
inputs=[rmbg_type, image_input, crop_size, foreground_ratio, background_choice, backgroud_color],
|
284 |
outputs=[image_input]
|
285 |
).success(
|
286 |
+
fn=gen_mvimg,
|
287 |
inputs=[mvimg_model, text, image_input, crop_size, seed, mvimg_guidance_scale, mvimg_steps],
|
288 |
outputs=[view_front, view_right, view_back, view_left]
|
289 |
).success(
|
|
|
291 |
inputs=[view_front, view_right, view_back, view_left, more, scheduler, guidance_scale, seed, octree_depth],
|
292 |
outputs=outputs,
|
293 |
api_name="generate_img2obj")
|
294 |
+
run_mv_btn.click(fn=gen_mvimg,
|
295 |
inputs=[mvimg_model, text, image_input, crop_size, seed, mvimg_guidance_scale, mvimg_steps],
|
296 |
outputs=[view_front, view_right, view_back, view_left]
|
297 |
)
|