Spaces:
Runtime error
Runtime error
from dotenv import find_dotenv, load_dotenv | |
from transformers import pipeline | |
from langchain import PromptTemplate, LLMChain, OpenAI | |
import requests | |
import os | |
import streamlit as st | |
load_dotenv(find_dotenv()) | |
HF_API_KEY=os.getenv("HF_API_KEY") | |
# img2text | |
def img2text(url): | |
image_to_text_model = pipeline("image-to-text", model="Salesforce/blip-image-captioning-large") | |
text = image_to_text_model(url)[0]["generated_text"] | |
print(text) | |
return text | |
# make the story of it using LLM | |
def generate_story(scenario): | |
template = """ | |
You are a story teller; | |
You can generate a short story based on a simple narrative, the story should be no more than 30 words; | |
CONTEXT: {scenario} | |
STORY; | |
""" | |
prompt = PromptTemplate(template=template, input_variables=["scenario"]) | |
story_llm = LLMChain(llm=OpenAI(model_name="gpt-4", temperature=1), prompt=prompt, verbose=True) | |
story = story_llm.predict(scenario=scenario).replace('"', '') | |
print(story) | |
return story | |
# text to speech | |
def text2speech(message): | |
API_URL = "https://api-inference.huggingface.co/models/espnet/kan-bayashi_ljspeech_vits" | |
headers = {"Authorization": f"Bearer {HF_API_KEY}"} | |
payload = { | |
"inputs": message | |
} | |
response = requests.post(API_URL, headers=headers, json=payload) | |
with open('audio.flac', 'wb') as file: | |
file.write(response.content) | |
# generate_story(img2text("test1.jpeg")) | |
# text2speech("Access tokens programmatically authenticate your identity to the Hugging Face Hub") | |
def main(): | |
st.set_page_config(page_title="image-to-audio-story", page_icon="π") | |
st.header("Image to audio story") | |
uploaded_file = st.file_uploader("Choose an image", type=['png', 'jpg']) | |
if uploaded_file is not None: | |
print(uploaded_file) | |
bytes_data = uploaded_file.getvalue() | |
with open(uploaded_file.name, "wb") as file: | |
file.write(bytes_data) | |
st.image(uploaded_file, caption="Uploaded Image", use_column_width=True) | |
st.text('Processing img2text...') | |
scenario = img2text(uploaded_file.name) | |
with st.expander("scenario"): | |
st.write(scenario) | |
st.text('Generating story on given scenario...') | |
story = generate_story(scenario) | |
with st.expander("story"): | |
st.write(story) | |
st.text('Processing text2speech...') | |
text2speech(story) | |
st.audio("audio.flac") | |
if __name__ == '__main__': | |
main() |