min-stable-diffusion-web / stable_diffusion.py
xfh's picture
init
24d2459
raw
history blame
39.2 kB
# https://arxiv.org/pdf/2112.10752.pdf
# https://github.com/ekagra-ranjan/huggingface-blog/blob/main/stable_diffusion.md
import gzip
import argparse
import math
import os
import re
import torch
from functools import lru_cache
from collections import namedtuple
import numpy as np
from tqdm import tqdm
from torch.nn import Conv2d, Linear, Module,SiLU, UpsamplingNearest2d,ModuleList
from torch import Tensor
from torch.nn import functional as F
from torch.nn.parameter import Parameter
device = "cpu"
def apply_seq(seqs, x):
for seq in seqs:
x = seq(x)
return x
def gelu(self):
return 0.5 * self * (1 + torch.tanh(self * 0.7978845608 * (1 + 0.044715 * self * self)))
class Normalize(Module):
def __init__(self, in_channels, num_groups=32, name="normalize"):
super(Normalize, self).__init__()
self.weight = Parameter(torch.ones(in_channels))
self.bias = Parameter(torch.zeros(in_channels))
self.num_groups = num_groups
self.in_channels = in_channels
self.normSelf = None
self.name = name
def forward(self, x):
# reshape for layernorm to work as group norm
# subtract mean and divide stddev
if self.num_groups == None: # just layernorm
return F.layer_norm(x, self.weight.shape, self.weight, self.bias)
else:
x_shape = x.shape
return F.group_norm(x, self.num_groups, self.weight, self.bias).reshape(*x_shape)
class AttnBlock(Module):
def __init__(self, in_channels, name="AttnBlock"):
super(AttnBlock, self).__init__()
self.norm = Normalize(in_channels, name=name+"_norm_Normalize")
self.q = Conv2d(in_channels, in_channels, 1)
self.k = Conv2d(in_channels, in_channels, 1)
self.v = Conv2d(in_channels, in_channels, 1)
self.proj_out = Conv2d(in_channels, in_channels, 1)
self.name = name
# copied from AttnBlock in ldm repo
def forward(self, x):
h_ = self.norm(x)
q, k, v = self.q(h_), self.k(h_), self.v(h_)
# compute attention
b, c, h, w = q.shape
q = q.reshape(b, c, h * w)
q = q.permute(0, 2, 1) # b,hw,c
k = k.reshape(b, c, h * w) # b,c,hw
w_ = q @ k
w_ = w_ * (c ** (-0.5))
w_ = F.softmax(w_, dim=-1)
# attend to values
v = v.reshape(b, c, h * w)
w_ = w_.permute(0, 2, 1)
h_ = v @ w_
h_ = h_.reshape(b, c, h, w)
del q,k,v, w_
return x + self.proj_out(h_)
class ResnetBlock(Module):
def __init__(self, in_channels, out_channels=None, name="ResnetBlock"):
super(ResnetBlock, self).__init__()
self.norm1 = Normalize(in_channels, name=name+"_norm1_Normalize")
self.conv1 = Conv2d(in_channels, out_channels, 3, padding=1)
self.norm2 = Normalize(out_channels, name=name+"_norm2_Normalize")
self.conv2 = Conv2d(out_channels, out_channels, 3, padding=1)
self.nin_shortcut = Conv2d(in_channels, out_channels, 1) if in_channels != out_channels else lambda x: x
self.name = name
def forward(self, x):
h = self.conv1(F.silu(self.norm1(x)))
h = self.conv2(F.silu(self.norm2(h)))
return self.nin_shortcut(x) + h
class Mid(Module):
def __init__(self, block_in, name="Mid"):
super(Mid, self).__init__()
self.block_1 = ResnetBlock(block_in, block_in, name=name+"_block_1_ResnetBlock")
self.attn_1 = AttnBlock(block_in, name=name+"_attn_1_AttnBlock")
self.block_2 = ResnetBlock(block_in, block_in, name=name+"_block_2_ResnetBlock")
self.name = name
def forward(self, x):
return self.block_2(self.attn_1(self.block_1(x)))
class Decoder(Module):
def __init__(self, name="Decoder"):
super(Decoder, self).__init__()
self.conv_in = Conv2d(4, 512, 3, padding=1)
self.mid = Mid(512, name=name+"_mid_Mid")
# invert forward
self.up = ModuleList([
ResnetBlock(128, 128, name=name + "_up_0_block_2_ResnetBlock"),
ResnetBlock(128, 128, name=name + "_up_0_block_1_ResnetBlock"),
ResnetBlock(256, 128, name=name + "_up_0_block_0_ResnetBlock"),
Conv2d(256, 256, 3, padding=1),
UpsamplingNearest2d(scale_factor=2.0),
ResnetBlock(256, 256, name=name + "_up_1_block_2_ResnetBlock"),
ResnetBlock(256, 256, name=name + "_up_1_block_1_ResnetBlock"),
ResnetBlock(512, 256, name=name + "_up_1_block_0_ResnetBlock"),
Conv2d(512, 512, 3, padding=1),
UpsamplingNearest2d(scale_factor=2.0),
ResnetBlock(512, 512, name=name + "_up_2_block_2_ResnetBlock"),
ResnetBlock(512, 512, name=name + "_up_2_block_1_ResnetBlock"),
ResnetBlock(512, 512, name=name + "_up_2_block_0_ResnetBlock"),
Conv2d(512, 512, 3, padding=1),
UpsamplingNearest2d(scale_factor=2.0),
ResnetBlock(512, 512, name=name + "_up_3_block_2_ResnetBlock"),
ResnetBlock(512, 512, name=name + "_up_3_block_1_ResnetBlock"),
ResnetBlock(512, 512, name=name + "_up_3_block_0_ResnetBlock"),]
)
self.norm_out = Normalize(128, name=name+"_norm_out_Normalize")
self.conv_out = Conv2d(128, 3, 3, padding=1)
self.name = name
def forward(self, x):
x = self.conv_in(x)
x = self.mid(x)
for l in self.up[::-1]:
x = l(x)
return self.conv_out(F.silu(self.norm_out(x)))
class Encoder(Module):
def __init__(self, name="Encoder"):
super(Encoder, self).__init__()
self.conv_in = Conv2d(3, 128, 3, padding=1)
self.down = ModuleList([
ResnetBlock(128, 128, name=name + "_down_block_0_0_ResnetBlock"),
ResnetBlock(128, 128, name=name + "_down_block_0_1_ResnetBlock"),
Conv2d(128, 128, 3, stride=2, padding=(0, 1, 0, 1)),
ResnetBlock(128, 256, name=name + "_down_block_1_0_ResnetBlock"),
ResnetBlock(256, 256, name=name + "_down_block_1_1_ResnetBlock"),
Conv2d(256, 256, 3, stride=2, padding=(0, 1, 0, 1)),
ResnetBlock(256, 512, name=name + "_down_block_2_0_ResnetBlock"),
ResnetBlock(512, 512, name=name + "_down_block_2_1_ResnetBlock"),
Conv2d(512, 512, 3, stride=2, padding=(0, 1, 0, 1)),
ResnetBlock(512, 512, name=name + "_down_block_3_0_ResnetBlock"),
ResnetBlock(512, 512, name=name + "_down_block_3_1_ResnetBlock"),
])
self.mid = Mid(512, name=name+"_mid_Mid")
self.norm_out = Normalize(512, name=name+"_norm_out_Normalize")
self.conv_out = Conv2d(512, 8, 3, padding=1)
self.name = name
def forward(self, x):
x = self.conv_in(x)
for l in self.down:
x = l(x)
x = self.mid(x)
return self.conv_out(F.silu(self.norm_out(x)))
class AutoencoderKL(Module):
def __init__(self, name="AutoencoderKL"):
super(AutoencoderKL, self).__init__()
self.encoder = Encoder(name=name+"_encoder_Encoder")
self.decoder = Decoder(name=name+"_decoder_Decoder")
self.quant_conv = Conv2d(8, 8, 1)
self.post_quant_conv = Conv2d(4, 4, 1)
self.name = name
def forward(self, x):
latent = self.encoder(x)
latent = self.quant_conv(latent)
latent = latent[:, 0:4] # only the means
print("latent", latent.shape)
latent = self.post_quant_conv(latent)
return self.decoder(latent)
# not to be confused with ResnetBlock
class ResBlock(Module):
def __init__(self, channels, emb_channels, out_channels, name="ResBlock"):
super(ResBlock, self).__init__()
self.in_layers = ModuleList([
Normalize(channels, name=name +"_in_layers_Normalize"),
SiLU(),
Conv2d(channels, out_channels, 3, padding=1)
])
self.emb_layers = ModuleList([
SiLU(),
Linear(emb_channels, out_channels)
])
self.out_layers = ModuleList([
Normalize(out_channels, name=name +"_out_layers_Normalize"),
SiLU(),
Conv2d(out_channels, out_channels, 3, padding=1)
])
self.skip_connection = Conv2d(channels, out_channels, 1) if channels != out_channels else lambda x: x
self.name = name
def forward(self, x, emb):
h = apply_seq(self.in_layers, x)
emb_out = apply_seq(self.emb_layers, emb)
h = h + emb_out.reshape(*emb_out.shape, 1, 1)
h = apply_seq(self.out_layers, h)
ret = self.skip_connection(x) + h
del emb_out, h
return ret
class CrossAttention(Module):
def __init__(self, query_dim, context_dim, n_heads, d_head, name="CrossAttention"):
super(CrossAttention, self).__init__()
self.to_q = Linear(query_dim, n_heads * d_head, bias=False)
self.to_k = Linear(context_dim, n_heads * d_head, bias=False)
self.to_v = Linear(context_dim, n_heads * d_head, bias=False)
self.scale = d_head ** -0.5
self.num_heads = n_heads
self.head_size = d_head
self.to_out = ModuleList([Linear(n_heads * d_head, query_dim)])
self.name = name
def forward(self, x, context=None):
context = x if context is None else context
q, k, v = self.to_q(x), self.to_k(context), self.to_v(context)
q = q.reshape(x.shape[0], -1, self.num_heads, self.head_size).permute(0, 2, 1,
3) # (bs, num_heads, time, head_size)
k = k.reshape(x.shape[0], -1, self.num_heads, self.head_size).permute(0, 2, 3,
1) # (bs, num_heads, head_size, time)
v = v.reshape(x.shape[0], -1, self.num_heads, self.head_size).permute(0, 2, 1,
3) # (bs, num_heads, time, head_size)
score = q@k * self.scale
score = F.softmax(score, dim=-1) # (bs, num_heads, time, time)
attention = (score@v).permute(0, 2, 1, 3) # (bs, time, num_heads, head_size)
h_ = attention.reshape(shape=(x.shape[0], -1, self.num_heads * self.head_size))
del q,k,v,score
return apply_seq(self.to_out, h_)
class GEGLU(Module):
def __init__(self, dim_in, dim_out, name ="GEGLU"):
super(GEGLU, self).__init__()
self.proj = Linear(dim_in, dim_out * 2)
self.dim_out = dim_out
self.name = name
def forward(self, x):
x, gate = self.proj(x).chunk(2, dim=-1)
return x * gelu(gate)
class FeedForward(Module):
def __init__(self, dim, mult=4, name="FeedForward"):
super(FeedForward, self).__init__()
self.net = ModuleList([
GEGLU(dim, dim * mult, name=name+"_net_0_GEGLU"),
Linear(dim * mult, dim)
])
self.name = name
def forward(self, x):
return apply_seq(self.net, x)
class BasicTransformerBlock(Module):
def __init__(self, dim, context_dim, n_heads, d_head, name="BasicTransformerBlock"):
super(BasicTransformerBlock, self).__init__()
self.attn1 = CrossAttention(dim, dim, n_heads, d_head, name=name+"_attn1_CrossAttention")
self.ff = FeedForward(dim, name=name+"_ff_FeedForward")
self.attn2 = CrossAttention(dim, context_dim, n_heads, d_head, name=name+"_attn2_CrossAttention")
self.norm1 = Normalize(dim, num_groups=None, name=name+"_norm1_Normalize")
self.norm2 = Normalize(dim, num_groups=None, name=name+"_norm2_Normalize")
self.norm3 = Normalize(dim, num_groups=None, name=name+"_norm3_Normalize")
self.name = name
def forward(self, x, context=None):
x = self.attn1(self.norm1(x)) + x
x = self.attn2(self.norm2(x), context=context) + x
x = self.ff(self.norm3(x)) + x
return x
class SpatialTransformer(Module):
def __init__(self, channels, context_dim, n_heads, d_head, name="SpatialTransformer"):
super(SpatialTransformer, self).__init__()
self.norm = Normalize(channels, name=name+"_norm_Normalize")
assert channels == n_heads * d_head
self.proj_in = Conv2d(channels, n_heads * d_head, 1)
self.transformer_blocks = ModuleList([BasicTransformerBlock(channels, context_dim, n_heads, d_head, name=name+"_transformer_blocks_0_BasicTransformerBlock")])
self.proj_out = Conv2d(n_heads * d_head, channels, 1)
self.name = name
def forward(self, x, context=None):
b, c, h, w = x.shape
x_in = x
x = self.norm(x)
x = self.proj_in(x)
x = x.reshape(b, c, h * w).permute(0, 2, 1)
for block in self.transformer_blocks:
x = block(x, context=context)
x = x.permute(0, 2, 1).reshape(b, c, h, w)
ret = self.proj_out(x) + x_in
del x_in, x
return ret
class Downsample(Module):
def __init__(self, channels, name = "Downsample"):
super(Downsample, self).__init__()
self.op = Conv2d(channels, channels, 3, stride=2, padding=1)
self.name = name
def forward(self, x):
return self.op(x)
class Upsample(Module):
def __init__(self, channels, name ="Upsample"):
super(Upsample, self).__init__()
self.conv = Conv2d(channels, channels, 3, padding=1)
self.name = name
def forward(self, x):
x = F.interpolate(x, scale_factor=2.0, mode="nearest")
return self.conv(x)
def timestep_embedding(timesteps, dim, max_period=10000):
half = dim // 2
freqs = np.exp(-math.log(max_period) * np.arange(0, half, dtype=np.float32) / half)
args = timesteps.cpu().numpy() * freqs
embedding = np.concatenate([np.cos(args), np.sin(args)])
return Tensor(embedding).to(device).reshape(1, -1)
class GroupGap(Module):
def __init__(self):
super(GroupGap, self).__init__()
class UNetModel(Module):
def __init__(self,name = "UNetModel"):
super(UNetModel, self).__init__()
self.time_embed = ModuleList([
Linear(320, 1280),
SiLU(),
Linear(1280, 1280),
])
self.input_blocks = ModuleList([
Conv2d(4, 320, kernel_size=3, padding=1),
GroupGap(),
# TODO: my head sizes and counts are a guess
ResBlock(320, 1280, 320, name=name+"_input_blocks_1_ResBlock"),
SpatialTransformer(320, 768, 8, 40,name=name+"_input_blocks_1_SpatialTransformer"),
GroupGap(),
ResBlock(320, 1280, 320, name=name+"_input_blocks_2_ResBlock"),
SpatialTransformer(320, 768, 8, 40,name=name+"_input_blocks_2_SpatialTransformer"),
GroupGap(),
Downsample(320, name=name+"_input_blocks_3_Downsample"),
GroupGap(),
ResBlock(320, 1280, 640, name=name+"_input_blocks_4_ResBlock"),
SpatialTransformer(640, 768, 8, 80, name=name+"_input_blocks_4_SpatialTransformer"),
GroupGap(),
ResBlock(640, 1280, 640, name=name+"_input_blocks_5_ResBlock"),
SpatialTransformer(640, 768, 8, 80, name=name+"_input_blocks_5_SpatialTransformer"),
GroupGap(),
Downsample(640, name=name+"_input_blocks_6_Downsample"),
GroupGap(),
ResBlock(640, 1280, 1280, name=name+"_input_blocks_7_ResBlock"),
SpatialTransformer(1280, 768, 8, 160, name=name+"_input_blocks_7_SpatialTransformer"),
GroupGap(),
ResBlock(1280, 1280, 1280, name=name+"_input_blocks_8_ResBlock"),
SpatialTransformer(1280, 768, 8, 160, name=name+"_input_blocks_8_SpatialTransformer"),
GroupGap(),
Downsample(1280,name=name+"_input_blocks_9_Downsample"),
GroupGap(),
ResBlock(1280, 1280, 1280, name=name+"_input_blocks_10_ResBlock"),
GroupGap(),
ResBlock(1280, 1280, 1280, name=name+"_input_blocks_11_ResBlock"),
GroupGap(),
])
self.middle_block = ModuleList([
ResBlock(1280, 1280, 1280, name=name+"_middle_block_1_ResBlock"),
SpatialTransformer(1280, 768, 8, 160, name=name+"_middle_block_2_SpatialTransformer"),
ResBlock(1280, 1280, 1280, name=name+"_middle_block_3_ResBlock")
])
self.output_blocks = ModuleList([
GroupGap(),
ResBlock(2560, 1280, 1280, name=name+"_output_blocks_1_ResBlock"),
GroupGap(),
ResBlock(2560, 1280, 1280, name=name+"_output_blocks_2_ResBlock"),
GroupGap(),
ResBlock(2560, 1280, 1280, name=name+"_output_blocks_3_ResBlock"),
Upsample(1280, name=name+"_output_blocks_3_Upsample"),
GroupGap(),
ResBlock(2560, 1280, 1280, name=name+"_output_blocks_4_ResBlock"),
SpatialTransformer(1280, 768, 8, 160, name=name+"_output_blocks_4_SpatialTransformer"),
GroupGap(),
ResBlock(2560, 1280, 1280, name=name+"_output_blocks_5_ResBlock"),
SpatialTransformer(1280, 768, 8, 160, name=name+"_output_blocks_5_SpatialTransformer"),
GroupGap(),
ResBlock(1920, 1280, 1280, name=name+"_output_blocks_6_ResBlock"),
SpatialTransformer(1280, 768, 8, 160, name=name+"_output_blocks_6_SpatialTransformer"),
Upsample(1280, name=name+"_output_blocks_6_Upsample"),
GroupGap(),
ResBlock(1920, 1280, 640, name=name+"_output_blocks_7_ResBlock"),
SpatialTransformer(640, 768, 8, 80, name=name+"_output_blocks_7_SpatialTransformer"), # 6
GroupGap(),
ResBlock(1280, 1280, 640, name=name+"_output_blocks_8_ResBlock"),
SpatialTransformer(640, 768, 8, 80, name=name+"_output_blocks_8_SpatialTransformer"),
GroupGap(),
ResBlock(960, 1280, 640, name=name+"_output_blocks_9_ResBlock"),
SpatialTransformer(640, 768, 8, 80, name=name+"_output_blocks_9_SpatialTransformer"),
Upsample(640, name=name+"_output_blocks_9_Upsample"),
GroupGap(),
ResBlock(960, 1280, 320, name=name+"_output_blocks_10_ResBlock"),
SpatialTransformer(320, 768, 8, 40, name=name+"_output_blocks_10_SpatialTransformer"),
GroupGap(),
ResBlock(640, 1280, 320, name=name+"_output_blocks_11_ResBlock"),
SpatialTransformer(320, 768, 8, 40, name=name+"_output_blocks_11_SpatialTransformer"),
GroupGap(),
ResBlock(640, 1280, 320, name=name+"_output_blocks_12_ResBlock"),
SpatialTransformer(320, 768, 8, 40, name=name+"_output_blocks_12_SpatialTransformer"),]
)
self.out = ModuleList([
Normalize(320, name=name+"_out_1_Normalize"),
SiLU(),
Conv2d(320, 4, kernel_size=3, padding=1)
])
self.name = name
def forward(self, x, timesteps=None, context=None):
# TODO: real time embedding
t_emb = timestep_embedding(timesteps, 320)
emb = apply_seq(self.time_embed, t_emb)
def run(x, bb):
if isinstance(bb, ResBlock):
x = bb(x, emb)
elif isinstance(bb, SpatialTransformer):
x = bb(x, context)
else:
x = bb(x)
return x
saved_inputs = []
for i, b in enumerate(self.input_blocks):
# print("input block", i)
if isinstance(b, GroupGap):
saved_inputs.append(x)
continue
x = run(x, b)
for bb in self.middle_block:
x = run(x, bb)
for i, b in enumerate(self.output_blocks):
# print("output block", i)
if isinstance(b, GroupGap):
x = torch.cat([x,saved_inputs.pop()], dim=1)
continue
x = run(x, b)
return apply_seq(self.out, x)
class CLIPMLP(Module):
def __init__(self, name ="CLIPMLP"):
super(CLIPMLP, self).__init__()
self.fc1 = Linear(768, 3072)
self.fc2 = Linear(3072, 768)
self.name = name
def forward(self, hidden_states):
hidden_states = self.fc1(hidden_states)
hidden_states = gelu(hidden_states)
hidden_states = self.fc2(hidden_states)
return hidden_states
class CLIPAttention(Module):
def __init__(self, name="CLIPAttention"):
super(CLIPAttention, self).__init__()
self.embed_dim = 768
self.num_heads = 12
self.head_dim = self.embed_dim // self.num_heads
self.scale = self.head_dim ** -0.5
self.k_proj = Linear(self.embed_dim, self.embed_dim)
self.v_proj = Linear(self.embed_dim, self.embed_dim)
self.q_proj = Linear(self.embed_dim, self.embed_dim)
self.out_proj = Linear(self.embed_dim, self.embed_dim)
self.name = name
def _shape(self, tensor, seq_len: int, bsz: int):
return tensor.reshape(bsz, seq_len, self.num_heads, self.head_dim).permute(0, 2, 1, 3)
def forward(self, hidden_states, causal_attention_mask):
bsz, tgt_len, embed_dim = hidden_states.shape
query_states = self.q_proj(hidden_states) * self.scale
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).reshape(*proj_shape)
key_states = key_states.reshape(*proj_shape)
src_len = key_states.shape[1]
value_states = value_states.reshape(*proj_shape)
attn_weights = query_states @ key_states.permute(0, 2, 1)
attn_weights = attn_weights.reshape(bsz, self.num_heads, tgt_len, src_len) + causal_attention_mask
attn_weights = attn_weights.reshape(bsz * self.num_heads, tgt_len, src_len)
attn_weights = F.softmax(attn_weights, dim=-1)
attn_output = attn_weights @ value_states
attn_output = attn_output.reshape(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.permute(0, 2, 1, 3)
attn_output = attn_output.reshape(bsz, tgt_len, embed_dim)
attn_output = self.out_proj(attn_output)
del query_states, key_states, value_states, attn_weights
return attn_output
class CLIPEncoderLayer(Module):
def __init__(self, name="CLIPEncoderLayer"):
super(CLIPEncoderLayer, self).__init__()
self.layer_norm1 = Normalize(768, num_groups=None, name=name+"_Normalize_0")
self.self_attn = CLIPAttention(name=name+"_CLIPAttention_0")
self.layer_norm2 = Normalize(768, num_groups=None,name=name+"_Normalize_1")
self.mlp = CLIPMLP(name=name+"_CLIPMLP_0")
self.name = name
def forward(self, hidden_states, causal_attention_mask):
residual = hidden_states
hidden_states = self.layer_norm1(hidden_states)
hidden_states = self.self_attn(hidden_states, causal_attention_mask)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.layer_norm2(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
del residual
return hidden_states
class CLIPEncoder(Module):
def __init__(self, name="CLIPEncoder"):
super(CLIPEncoder, self).__init__()
self.layers = ModuleList([CLIPEncoderLayer(name=name+"_"+str(i)) for i in range(12)])
self.name = name
def forward(self, hidden_states, causal_attention_mask):
for i, l in enumerate(self.layers):
hidden_states = l(hidden_states, causal_attention_mask)
return hidden_states
class CLIPTextEmbeddings(Module):
def __init__(self, name="CLIPTextEmbeddings"):
super(CLIPTextEmbeddings, self ).__init__()
self.token_embedding_weight = Parameter(torch.zeros(49408, 768))
self.position_embedding_weight = Parameter(torch.zeros(77, 768))
self.name = name
def forward(self, input_ids, position_ids):
# TODO: actually support batches
inputs = torch.zeros((1, len(input_ids), 49408))
inputs = inputs.to(device)
positions = torch.zeros((1, len(position_ids), 77))
positions = positions.to(device)
for i, x in enumerate(input_ids): inputs[0][i][x] = 1
for i, x in enumerate(position_ids): positions[0][i][x] = 1
inputs_embeds = inputs @ self.token_embedding_weight
position_embeddings = positions @ \
self.position_embedding_weight
return inputs_embeds + position_embeddings
class CLIPTextTransformer(Module):
def __init__(self, name="CLIPTextTransformer"):
super(CLIPTextTransformer, self).__init__()
self.embeddings = CLIPTextEmbeddings(name=name+"_CLIPTextEmbeddings_0")
self.encoder = CLIPEncoder(name=name+"_CLIPEncoder_0")
self.final_layer_norm = Normalize(768, num_groups=None, name=name+"_CLIPTextTransformer_normalizer_0")
# 上三角都是 -inf 值
self.causal_attention_mask = Tensor(np.triu(np.ones((1, 1, 77, 77), dtype=np.float32) * -np.inf, k=1)).to(device)
self.name = name
def forward(self, input_ids):
x = self.embeddings(input_ids, list(range(len(input_ids))))
x = self.encoder(x, self.causal_attention_mask)
return self.final_layer_norm(x)
# Clip tokenizer, taken from https://github.com/openai/CLIP/blob/main/clip/simple_tokenizer.py (MIT license)
@lru_cache()
def default_bpe():
return os.path.join(os.path.dirname(os.path.abspath(__file__)),
"./clip_tokenizer/bpe_simple_vocab_16e6.txt.gz")
def get_pairs(word):
"""Return set of symbol pairs in a word.
Word is represented as tuple of symbols (symbols being variable-length strings).
"""
pairs = set()
prev_char = word[0]
for char in word[1:]:
pairs.add((prev_char, char))
prev_char = char
return pairs
def whitespace_clean(text):
text = re.sub(r'\s+', ' ', text)
text = text.strip()
return text
def bytes_to_unicode():
"""
Returns list of utf-8 byte and a corresponding list of unicode strings.
The reversible bpe codes work on unicode strings.
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
This is a signficant percentage of your normal, say, 32K bpe vocab.
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
And avoids mapping to whitespace/control characters the bpe code barfs on.
"""
bs = list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1))
cs = bs[:]
n = 0
for b in range(2 ** 8):
if b not in bs:
bs.append(b)
cs.append(2 ** 8 + n)
n += 1
cs = [chr(n) for n in cs]
return dict(zip(bs, cs))
import threading
class ClipTokenizer:
_instance_lock = threading.Lock()
def __init__(self, bpe_path: str = default_bpe()):
self.byte_encoder = bytes_to_unicode()
merges = gzip.open(bpe_path).read().decode("utf-8").split('\n')
merges = merges[1:49152 - 256 - 2 + 1]
merges = [tuple(merge.split()) for merge in merges]
vocab = list(bytes_to_unicode().values())
vocab = vocab + [v + '</w>' for v in vocab]
for merge in merges:
vocab.append(''.join(merge))
vocab.extend(['<|startoftext|>', '<|endoftext|>'])
self.encoder = dict(zip(vocab, range(len(vocab))))
self.bpe_ranks = dict(zip(merges, range(len(merges))))
self.cache = {'<|startoftext|>': '<|startoftext|>', '<|endoftext|>': '<|endoftext|>'}
self.pat = self.pat = re.compile(r"""<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[^\s]+""",
re.IGNORECASE)
@classmethod
def instance(cls, *args, **kwargs):
with ClipTokenizer._instance_lock:
if not hasattr(ClipTokenizer, "_instance"):
ClipTokenizer._instance = ClipTokenizer(*args, **kwargs)
return ClipTokenizer._instance
def bpe(self, token):
if token in self.cache:
return self.cache[token]
word = tuple(token[:-1]) + (token[-1] + '</w>',)
pairs = get_pairs(word)
if not pairs:
return token + '</w>'
while True:
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float('inf')))
if bigram not in self.bpe_ranks:
break
first, second = bigram
new_word = []
i = 0
while i < len(word):
try:
j = word.index(first, i)
new_word.extend(word[i:j])
i = j
except Exception:
new_word.extend(word[i:])
break
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
new_word.append(first + second)
i += 2
else:
new_word.append(word[i])
i += 1
new_word = tuple(new_word)
word = new_word
if len(word) == 1:
break
else:
pairs = get_pairs(word)
word = ' '.join(word)
self.cache[token] = word
return word
def encode(self, text):
bpe_tokens = []
text = whitespace_clean(text.strip()).lower()
for token in re.findall(self.pat, text):
token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8'))
bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' '))
# Truncation, keeping two slots for start and end tokens.
if len(bpe_tokens) > 75:
bpe_tokens = bpe_tokens[:75]
return [49406] + bpe_tokens + [49407] * (77 - len(bpe_tokens) - 1)
class StableDiffusion(Module):
_instance_lock = threading.Lock()
def __init__(self, name="StableDiffusion"):
super(StableDiffusion, self).__init__()
self.betas = Parameter(torch.zeros(1000))
self.alphas_cumprod = Parameter(torch.zeros(1000))
self.alphas_cumprod_prev = Parameter(torch.zeros(1000))
self.sqrt_alphas_cumprod = Parameter(torch.zeros(1000))
self.sqrt_one_minus_alphas_cumprod = Parameter(torch.zeros(1000))
self.log_one_minus_alphas_cumprod = Parameter(torch.zeros(1000))
self.sqrt_recip_alphas_cumprod = Parameter(torch.zeros(1000))
self.sqrt_recipm1_alphas_cumprod = Parameter(torch.zeros(1000))
self.posterior_variance = Parameter(torch.zeros(1000))
self.posterior_log_variance_clipped = Parameter(torch.zeros(1000))
self.posterior_mean_coef1 = Parameter(torch.zeros(1000))
self.posterior_mean_coef2 = Parameter(torch.zeros(1000))
self.unet = UNetModel(name=name+"_unet")
self.model = namedtuple("DiffusionModel", ["diffusion_model"])(diffusion_model=self.unet)
self.first_stage_model = AutoencoderKL(name=name+"_AutoencoderKL")
self.text_decoder = CLIPTextTransformer(name=name+"_CLIPTextTransformer")
self.cond_stage_model = namedtuple("CondStageModel", ["transformer"])(
transformer=namedtuple("Transformer", ["text_model"])(text_model=self.text_decoder))
self.name = name
@classmethod
def instance(cls, *args, **kwargs):
with StableDiffusion._instance_lock:
if not hasattr(StableDiffusion, "_instance"):
StableDiffusion._instance = StableDiffusion(*args, **kwargs)
return StableDiffusion._instance
# TODO: make forward run the model
# Set Numpy and PyTorch seeds
class Args(object):
def __init__(self, phrase, steps, model_type, guidance_scale, img_width, img_height, seed, device, model_file):
self.phrase = phrase
self.steps = steps
self.model_type = model_type
self.scale = guidance_scale
self.img_width = int(img_width)
self.img_height = int(img_height)
self.seed = seed
self.device = device
self.model_file = model_file
class Text2img(Module):
_instance_lock = threading.Lock()
def __init__(self, args: Args):
super(Text2img, self).__init__()
self.is_load_model=False
self.args = args
self.model = StableDiffusion().instance()
@classmethod
def instance(cls, *args, **kwargs):
with Text2img._instance_lock:
if not hasattr(Text2img, "_instance"):
Text2img._instance = Text2img(*args, **kwargs)
return Text2img._instance
def load_model(self):
if self.args.model_file != "" and self.is_load_model==False:
net = torch.load(self.args.model_file )
self.model.load_state_dict(net)
self.model = self.model.to(device)
self.is_load_model=True
def get_token_encode(self, phrase):
tokenizer = ClipTokenizer().instance()
phrase = tokenizer.encode(phrase)
with torch.no_grad():
context = self.model.text_decoder(phrase)
return context.to(self.args.device)
def forward(self, phrase:str):
self.set_seeds(True)
self.load_model()
context = self.get_token_encode(phrase)
unconditional_context = self.get_token_encode("")
timesteps = list(np.arange(1, 1000, 1000 // self.args.steps))
print(f"running for {timesteps} timesteps")
alphas = [self.model.alphas_cumprod[t] for t in timesteps]
alphas_prev = [1.0] + alphas[:-1]
latent_width = int(self.args.img_width) // 8
latent_height = int(self.args.img_height) // 8
# start with random noise
latent = torch.randn(1, 4, latent_height, latent_width)
latent = latent.to(self.args.device)
with torch.no_grad():
# this is diffusion
for index, timestep in (t := tqdm(list(enumerate(timesteps))[::-1])):
t.set_description("%3d %3d" % (index, timestep))
e_t = self.get_model_latent_output(latent.clone(), timestep, self.model.unet, context.clone(),
unconditional_context.clone())
x_prev, pred_x0 = self.get_x_prev_and_pred_x0(latent, e_t, index, alphas, alphas_prev)
# e_t_next = get_model_output(x_prev)
# e_t_prime = (e_t + e_t_next) / 2
# x_prev, pred_x0 = get_x_prev_and_pred_x0(latent, e_t_prime, index)
latent = x_prev
return self.latent_decode(latent, latent_height, latent_width)
def get_x_prev_and_pred_x0(self, x, e_t, index, alphas, alphas_prev):
temperature = 1
a_t, a_prev = alphas[index], alphas_prev[index]
sigma_t = 0
sqrt_one_minus_at = math.sqrt(1 - a_t)
# print(a_t, a_prev, sigma_t, sqrt_one_minus_at)
pred_x0 = (x - sqrt_one_minus_at * e_t) / math.sqrt(a_t)
# direction pointing to x_t
dir_xt = math.sqrt(1. - a_prev - sigma_t ** 2) * e_t
noise = sigma_t * torch.randn(*x.shape) * temperature
x_prev = math.sqrt(a_prev) * pred_x0 + dir_xt # + noise
return x_prev, pred_x0
def get_model_latent_output(self, latent, t, unet, context, unconditional_context):
timesteps = torch.Tensor([t])
timesteps = timesteps.to(self.args.device)
unconditional_latent = unet(latent, timesteps, unconditional_context)
latent = unet(latent, timesteps, context)
unconditional_guidance_scale = self.args.scale
e_t = unconditional_latent + unconditional_guidance_scale * (latent - unconditional_latent)
del unconditional_latent, latent, timesteps, context
return e_t
def latent_decode(self, latent, latent_height, latent_width):
# upsample latent space to image with autoencoder
# x = model.first_stage_model.post_quant_conv( 8* latent)
x = self.model.first_stage_model.post_quant_conv(1 / 0.18215 * latent)
x = x.to(self.args.device)
x = self.model.first_stage_model.decoder(x)
x = x.to(self.args.device)
# make image correct size and scale
x = (x + 1.0) / 2.0
x = x.reshape(3, latent_height * 8, latent_width * 8).permute(1, 2, 0)
decode_latent = (x.detach().cpu().numpy().clip(0, 1) * 255).astype(np.uint8)
return decode_latent
def decode_latent2img(self, decode_latent):
# save image
from PIL import Image
img = Image.fromarray(decode_latent)
return img
def set_seeds(self, cuda):
np.random.seed(self.args.seed)
torch.manual_seed(self.args.seed)
if cuda:
torch.cuda.manual_seed_all(self.args.seed)
@lru_cache()
def text2img(phrase, steps, model_file, guidance_scale, img_width, img_height, seed, device):
try:
args = Args(phrase, steps, None, guidance_scale, img_width, img_height, seed, device, model_file)
im = Text2img.instance(args).forward(args.phrase)
finally:
pass
return im
# this is sd-v1-4.ckpt
FILENAME = "/tmp/stable_diffusion_v1_4.pt"
# this is sd-v1-5.ckpt
# FILENAME = "/tmp/stable_diffusion_v1_5.pt"
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Run Stable Diffusion',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--steps', type=int, default=25, help="Number of steps in diffusion")
parser.add_argument('--phrase', type=str, default="anthropomorphic cat portrait art ", help="Phrase to render")
parser.add_argument('--out', type=str, default="/tmp/rendered.png", help="Output filename")
parser.add_argument('--scale', type=float, default=7.5, help="unconditional guidance scale")
parser.add_argument('--model_file', type=str, default="/tmp/mdjrny-v4.pt", help="model weight file")
parser.add_argument('--img_width', type=int, default=512, help="output image width")
parser.add_argument('--img_height', type=int, default=512, help="output image height")
parser.add_argument('--seed', type=int, default=443, help="random seed")
parser.add_argument('--device_type', type=str, default="cpu", help="random seed")
args = parser.parse_args()
device = args.device_type
im = text2img(args.phrase, args.steps, args.model_file, args.scale, args.img_width, args.img_height, args.seed, args.device_type)
print(f"saving {args.out}")
im.save(args.out)